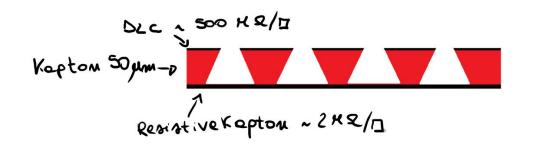


Updates from Pavia

Ilaria Vai for the Pavia Team

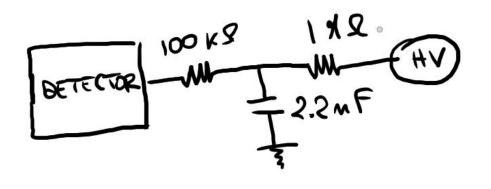
Detector configuration – 1



- Drift 1 = 3 mm

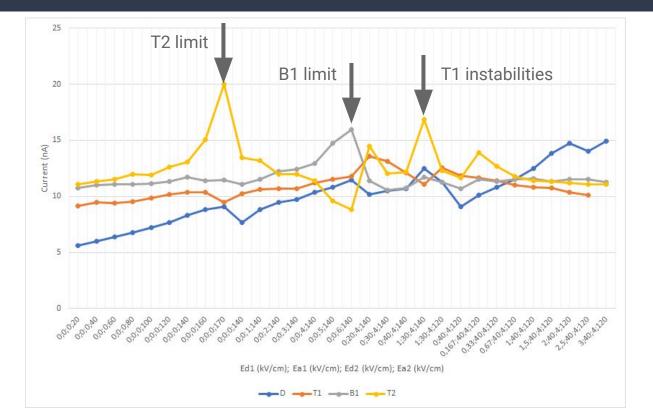
- Drift 2 = 1 mm

Ar/CO2 70/30 - 2 l/h flushed for almost 1 week at the time of the test


Detector configuration – 2

Amplification layers made of:

- T foils: 50 um-thick Kapton covered with DLC
- B foils: 25 um-thick Resistive Kapton


Detector configuration – 3

HV filter mounted on each HV channel

B2 initially not connected to the power supply and floating (no HV filter installed).

HV stability – Part 1

Powering strategy:

channels are in cascade, then we started to power the T2 (with B2 floating) keeping B1 and T1 at the same voltage \rightarrow only the field between T2 and B2 is ON.

Once we reached the max value, we stopped raising T2 and we started to raise B1 and so on..

HV stability – Part 1

- T2 stable up to 700 V \rightarrow E_{A2} = 140 kV/cm: **OK**
- B1 stable up to 1300 V (700 V + 600 V) $\rightarrow E_{D2} = 6 \text{ kV/cm}$: *OK*

 \rightarrow Fix the configuration of the second layer at:

- T2 = 700 V \rightarrow E_{A2} = 140 kV/cm
- B1 = 1100 V \rightarrow E_{D2} = 4 kV/cm

But when we start powering also the first layer:

• T1 unstable already at 1300 V (1100 V + 200 V) $\rightarrow E_{A1} = 40 \text{ kV/cm}$: **NOT OK!**

HV stability – Part 1

Over-lunch temporary stable configuration:

HV Channel	Voltage (V)	Field Name	Field Value (kV/cm)
D	2100	Drift 1	3
T1	1200	Amplification 1	40
B1	1000	Drift 2	4
T2	600	Amplification 2	120

Trying to improve the situation...

- checking all the resistors in the filters
- searching for shorts between the layers with the tester
- adding an additional ground connection to all the HV paths not used
- adding the readout circuit to B2 (previously floating)
- cleaning everything

But the situation didn't improve, actually it got worse...

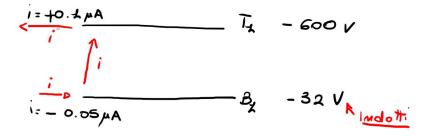
HV stability - Part 2

..when we repower the detector, already in the configuration:

- V(D) = 700 V
- V(T1) = 700 V
- V(B1) = 700 V
- V(T2) = 600 V

T1 starts to draw a current of the order of 5-10 uA!

Note that T1 is at the same voltage of the two adjacent channels, i.e. no nominal electric field around it!


HV stability - Part 2

Additionally, in the configuration:

- V(D) = 0 V
- V(T1) = 600 V
- V(B1) = 0 V
- V(T2) = 0 V

on B1 we measure an induced voltage of the order of 30 V, while if we have a look at the currents:

- i(T1) = 0.1 uA
- i(B1) = -0.055 uA

Debugging again...

- Checking again for shorts with the tester
- Changing HV cable/channel to exclude a problem in the cable itself/module
- Removing the additional grounding path to the not-used HV paths
- Checking again the HV filters in detail
- Removing B2 readout circuit
- Adding an HV filter also to B2 in order to connect it to the HV power supply and analyze its behaviour...

HV stability - Part 3

...and indeed we found that in the configuration:

- V(D) = 0 V
- V(T1) = 0 V
- V(B1) = 0 V
- V(T2) = 600 V
- V(B2) = 0 V

on B2 we measure an induced voltage of the order of 30-50 V, while if we have a look at the currents we have values similar to those observed with layer 1.

Also, if we power B2 while T2=0, we observe an induced voltage on T2 and a current flowing in the opposite direction.

Few observations from the foils – 1

Few observations from the foils – 2

The conducting paste seems to have pierced the kapton foil \rightarrow there's a short that we couldn't see with the tester but we can observe here with the megger

 \rightarrow the same problems are present in all the T-type foils we currently have in Pavia (4)

Summary...

The detector couldn't be operated due to serious issues detected in the T-type foils, in particular:

- diffused damages
- problems with the HV paths and the conducting paste as shown in the video

The consequence is that the T-type foils are not well insulated from the B-type, i.e. a stable and sufficiently high electric field cannot be established in the amplification regions.

All the foils seems to suffer more or less from these kind of issues, then **we cannot perform further tests in Pavia.**

..and proposals

Review the design of the detector:

- 1. Move to a simpler readout board
 - a. designed to host only 2-3 foils
 - b. no strips, just one big readout pad
 - c. no samtec connectors, just a simple LEMO

2. Produce new T-type foils

- a. avoid the usage of conducting paste for the HV paths
- b. is it possible to create a mask of the shape of the HV path so that when the copper is chemically removed we keep the HV path "visible"?
- 3. Need to have a couple of GEM foils that can be exchanged with the FTM foils for debugging purposes

Could we for example use a 10x10 Triple-GEM kit as baseline and produce the FTM foils to fit into it?