Status of the fred EM plugin

Giacomo Traini, Gaia Franciosini, Patrizia De Maria

- A correction on the positrons dE/dx with respect to the electrons one has been implemented
- The restricted dE/dx of positrons has been fixed (small error in the computation)
- The positron annihilation in flight has been implemented using the cross section got by the GEANT4 manual

	S ⁺ _{co1} (T)/S ⁻ _{co1} (T)							
T (MeV)	(1.7 g/cm ³)	Al	Cu	Ag	Pb	H ₂ 0 (liq.)	Air	
1000	0.976	0.976	0.975	0.975	0.975	0.977	0.981	
500	0.976	0.976	0.974	0.974	0.974	0.976	0.981	
200	0.975	0.975	0.973	0.973	0.973	0.975	0.980	
100	0.974	0.974	0.973	0.972	0.973	0.975	0.979	
50	0.974	0.973	0.972	0.972	0.971	0.974	0.978	
20	0.972	0.972	0.971	0.971	0.969	0.973	0.977	
10	0.972	0.971	0.971	0.969	0.968	0.973	0.976	
5	0.972	0.971	0.970	0.969	0.968	0.972	0.974	
2	0.974	0.972	0.971	0.969	0.968	0.974	0.975	
1	0.978	0.977	0.977	0.975	0.973	0.979	0.979	
0.5	0.990	0.989	0.991	0.989	0.989	0.990	0.990	
0.2	1.016	1.018	1.023	1.023	1.025	1.016	1.016	
0.1	1.039	1.043	1.051	1.054	1.059	1.039	1.039	
0:0	5 1.060	1.067	1.077	1.083	1.094	1.059	1.060	
0.0	2 1.084	1.097	1,112	1,123	1.144	1.084	1.086	
0.0	1 1.102	1,119	1,142	1.158	1,192	1.101	1.104	

https://nvlpubs.nist.gov/nistpubs/Legacy/IR/ nbsir82-2550.pdf

- The correction is due to the different elementary processes (Bhabha vs Moeller
- At present all the material are treated as water (the correction weakly depends on the material)

Effect on the ddd

• The ddd show a slighlty better agreement with FLUKA but a significant difference before the peak remains

$$\sigma(Z,E) = \frac{Z\pi r_e^2}{\gamma+1} \left[\frac{\gamma^2 + 4\gamma + 1}{\gamma^2 - 1} \ln\left(\gamma + \sqrt{\gamma^2 - 1}\right) - \frac{\gamma + 3}{\sqrt{\gamma^2 - 1}} \right]$$

- Total cross section taken from the GEANT4 manual
- The final state sampling has been performed using a isotropic angular distribution in the center of mass frame, retrieving the 4-momentum in the lab frame applying the Lorentz boost
- <u>Warning</u>: GEANT4 provide also $d\sigma/dE$ and its sampling method...

Effect on ddd

 In the current plugin version positron can annihilate with the probability given by the cross-section shown below when their energy is > 30 keV. As their energy go below such threshold annihilation is forced

Annihilation in flight

 The ~ 10% of the positron annihilates in flight! To be checked with FLUKA...

- We are defining and implementing a standard benchmarking procedure. Gaia is taking care of creating a repository of FLUKA simulations to make a comparison with the FRED output (webpage <u>http://arpg-</u> <u>serv.ing2.uniroma1.it/twiki/bin/view/Sandbox/FredEMBenchmark</u>)
 - <u>Dose level benchmark</u>: e-, e+, γ, @ 1,10,100 MeV on "thick" targets (H₂0, PMMA, Air, Bone, CT(?)). Plots: ddd, lateral profiles (3 depths), dose difference voxel distribution)
 - <u>Physics process level :</u> e-, e+, γ, @ 1,10,100 MeV on "thin" targets (H,C,O,Ca,Au, Al (?), Ti (?)). (secondaries energy-angle distributions @ target exit, interactions occurrence (i.e. cross sections), interaction properties plots).
 - celo
 - manca
 - in progress

e- beams on H₂O target: ddd

INFN - Roma

e- beams on H₂O target: ddd

electron beam @ 1 MeV, depth = 0.1 cm - 0.3 cm

13

electron beam @ 10 MeV, depth = 0.1 cm - 2.5 cm - 4.0 cm

tranverse profile at z = 4.000000

elec 60 MeV.mhd

fluka/dose_Gy_60MeV.mhd

1e-9

60 MeV

2.0

1.5

1.0

0.5

Transverse Profile at z= 4 cm

tranverse profile at z = 15.000000

1e-10

60 MeV

4.0

3.0

2.5 2.0

1.5

Transverse Profile at z=15 cm

e- beams on H₂O target: lateral

Transverse Profile at z= 24 cm

16

- We have to fill the FLUKA simulation repository and start a systematic comparison with the FRED output.
- The benchmark procedure has to be automated. This will allow to simplify the iter when we will modify the plugin... (it will happen very very soon)
- Next step: tables tables tables tables ... the cross section of many interactions (mostly the more recent) is computed on the fly, wasting time.