
A. Schiavi

SBAI - URLS - 05/10/2020

Fred 3.50
status report

FRED fast-MC platform

• particle tracking with class II MC algo in voxelized geometry

• fred-p : clinical stable version for proton therapy (Maastro;
Kraków; PSI - Zurich)

• fred-C : plugin-level implementation (see Micol’s PhD)

• fred-em : plugin level implementation, very good agreement in
the therapeutic energy range for IORT (~10 MeV) and for Flash
(70 MeV - 100 MeV) (see preparatory work by Gaia, Patrizia and
Giacomo)

• Optx : ported to multicore parallelism; adapted to DMF; basis of
next-generation DMF-aware Flash-therapy TPS

Version timeline

3.0.z13

Jan 2020

3.0.18

Feb 2020

3.0.23

Apr 2020

3.0.32

Jul 2020

3.0.20

18 Mar 2020

3.0.24

21 Apr 2020

Sep 2020

3.50

Windows

Linux

Development driven by MAASTRO
noozle geometry and A.A. of Mevion machine

Development driven by SBAM activity on
plugin for Carbon and e.m. upgrade

What’s new in v 3.50 for SBAM

• Input parsing and error reporting: no undefined or unknown
parameters anymore => safer approach => WYWIWYG

• Multiple verbosity levels : 0 - 5 (minimal to debug)

• Plugin parameters moved inside plugin<…> section

• mhd scripts : major update of argument parsing and features

• Python preparser (experimental)

Verbosity levels

1. level is taken from FRED_VERBOSE env variable (if present)

2. built-in level is set to 3 (mid verbosity)

3. level can be then defined in input file (see below for sections)

4. cmdline option -V0…-V5 override any previous settings

verbose: all 0
verbose: physics 0
verbose: delivery 0
verbose: plugin 0
verbose: source 0
verbose: geometry 0
verbose: environment 0
verbose: input 0
verbose: materials 0
verbose: radiobiology 5

Plugin parameters
Now plugin parameters have to be put inside a multiline

plugin<…> section

…

MCSmode = 0
…

eg. plugin code :
MCSmodel = getIntParam("MCSmodel",1);
cout <<"MCS model::" << MCSmodel << " 0-->Highland,
1-->Molierebethe" << endl;

…
plugin<

MCSmode = 0

plugin>
…

Inputfile
Before

Inputfile
Now

Python preparser

Now input files are merged, stripped and evaluated by a python
preparser.

This allows to expand and extend syntax to pythonic language.

New constructs and statements that have been added:

• def: directive used to define parameters and variables

• func: directive used to define functions

• for()<…> directive implementing loops

• if()<…> directive for conditional execution

Example: looper.inp

create a spiraling irradiation pattern by displacing the phantom

region: phantom ; L=[10,10,10] ; voxels = [101,101,20]

def: N = 5 # number of turns
def: nspots = 100 # total number of spots
def: Rmax = 3 # major radius
def: Rmin =0 # minor radius

func: r(th) = Rmax-(Rmax-Rmin)*th/(N*2*pi)

for(th in np.linspace(0,N*2*pi,nspots))<

 def: x = r(th)*cos(th)
 def: y = r(th)*sin(th)
 transform: phantom move_to $x $y 0
 deliver: all

for>

NB: here it generates a series of geometry trasformations on the phantom

Example: chessboard.inp
create a 'chessboard' irradiation pattern by displacing the field
use a single spot with square cross-section

nprim=1e4

def: side = 5
def: spotSize = 1
def: spotSpacing = spotSize
def: nspot = int(side/spotSpacing)

pbXsec=box
pbFWHM=$spotSize

region: phantom ; L=[${side*1.5},${side*1.5},1] ; voxels = [200,200,1] ; pivot=[0.5,0.5,0]

for(ix in range(nspot+1))< # control points in x
 for(iy in range(nspot+1))< # control points in y

 if(mod(ix,2)==mod(iy,2))< # choose alternate squares
 def: x = -side/2 + ix*spotSpacing
 def: y = -side/2 + iy*spotSpacing
 transform: field_0 move_to $x $y -50
 deliver: all
 if>
 for>
for>

NB: here it generates a series of geometry trasformations on the field

Example: radiation_hazard.inp
create a 'radiation hazard' irradiation pattern
use many spots with gaussian cross-section (programmatically build an rtplan)
use typical interspot spacing for uniform irradiation

def: R = 3
def: side = 6*R*2
def: spotSize = R/3

pbXsec=gauss
pbFWHM=$spotSize

func: thSpacing(r) = spotSize/r/3
…

build rtplan

def: ipb = 0 # spot (i.e. pencil beam) index

central disc
for(r in np.arange(0,R,spotSize/3))<
 for(th in np.linspace(0,2*pi,int(2*pi/thSpacing(r)),endpoint=False))<
 def: x = r*cos(th)
 def: y = r*sin(th)
 pb: $ipb 1 $x $y
 def: ipb = ipb+1
 for>
for>
…
…

NB: here it generates an rtplan

Material re-definition

fSPTablesDir=“sptables"

material: C ; rho = 2.0 ; Ipot = 81.0 ; Lrad = 42.70 ; composition=[C]

material: Graphite ; basedOn = C; rho=2.0 ; Ipot = 78 ; Lrad =42.7

Where to look for stopping tables

Original material definition: has to aligned
with stopping tables mat.prop file

Re-definition of material properties:

• density
• ionization potential
• radiation length

mhd_*.py scripts

The python scripts that can help manipulation and visualization of
mhd map.

Where: in the $FREDDIR/curr/scripts/mhd_scripts

They are automatically added to the user $PATH and they change
and update with every new version. If you change current fred
version, you change also the mhd_*.py scripts

Please use these tools: if you want to make changes, rename them
and use symbolic links (not copies!)

next stable release

3.50

