Fred 3.50
status report

A. Schiavi
e A [E RIS 0509109

FRED fast-MC platform

« particle tracking with class Il MC algo in voxelized geometry

e fred-p : clinical stable version for proton therapy (Maastro;
Krakdw; PSI - Zurich)

e fred-C : plugin-level implementation (see Micol's PhD)

e fred-em : plugin level mplementation, very good agreement In
the therapeutic energy range for IORT (~10 MeV) and for Flash
(/0 MeV - 100 MeV) (see preparatory work by Gala, Patrizia and
Glacomo)

 Optx : ported to multicore parallelism; adapted to DMF; basis of
next-generation DMF-aware Flash-therapy TPS

Version timeline

Development driven by MAASTRO
noozle geometry and A.A. of Mevion machine

Windows /
3020 g 3024

18 Mar|2020 21 Apr{2020
Jan 2020 Feb 2020 Apr 2020 Jul 2020
3.0zI13 —m\ Sep 2020
- 3.0723 3.0.32

Linux

\ Development driven by SBAM activity on

plugin for Carbon and e.m. upgrade

What’s new inv 3.50 for SBAM

* Input parsing and error reporting: no undefined or unknown
parameters anymore => safer approach => WYWIWYG

« Multiple verbosity levels : 0 - 5 (minimal to debug)
* Plugin parameters moved inside plugin<...> section
« mhd scripts : major update of argument parsing and features

« Python preparser (experimental)

Verbosity levels

|. level is taken from FRED_VERBOSE env variable (if present)

2. bullt-in level is set to 3 (mid verbosity)
3. level can be then defined in input file (see below for sections)

4. cdline option -VO...-V5 override any previous settings

verbose: all 0

verbose: physics 0
verbose: delivery 0
verbose: plugin 0
verbose: source 0
verbose: geometry 0
verbose: environment 0
verbose: input 0
verbose: materials 0
verbose: radiobiology 5

Plugin parameters

Now plugin parameters have to be put inside a multiline

plugin<...> section

: MCSmodel = getIntParam("MCSmodel",1);
= p|UgIﬂ code : cout <<"MCS model::" << MCSmodel << " 0-->Highland,
1-->Molierebethe" << endl;

Inputfile Inputfile
Before Now
plugin<

MCSmode

0 » MCSmode = 0

plugin>

Python preparser

Now Input files are merged, stripped and evaluated by a python
preparser.

This allows to expand and extend syntax to pythonic language.
New constructs and statements that have been added:

 def: directive used to define parameters and variables

e func: directive used to define functions

e for()<...> directive implementing loops

* if()<...> directive for conditional execution

Example: looper.inp

create a spiraling irradiation pattern by displacing the phantom
region: phantom ; L=[10,10,10] ; voxels = [101,101,20]

def: N = 5 # number of turns

def: nspots = 100 # total number of spots
def: Rmax = 3 # major radius

def: Rmin =0 # minor radius

XY slice at z=5.25

func: r(th) = Rmax-(Rmax-Rmin)*th/(N*2*pi)
for(th in np.linspace(0,N*2*pi,nspots))<

def: x = r(th)*cos(th)
def: y = r(th)*sin(th)
transform: phantom move to $x Sy 0
deliver: all —

y (cm)
o
y (cm)

-4
for>

NB: here it generates a series of geometry trasformations on the phantom

Example: chessboard.inp

create a 'chessboard' irradiation pattern by displacing the field
use a single spot with square cross-section

nprim=1le4
def: side = 5
def: spotSize =1

def: spotSpacing = spotSize
def: nspot = int(side/spotSpacing)

pbXsec=box
pbFWHM=$spotSize
region: phantom ; L=[${side*1.5},${side*1.5},1] ; voxels = [200,200,1] ; pivot=[0.5,0.5,0]

for(ix in range(nspot+l))< # control points in x
for(iy in range(nspot+l))< # control points in y

XY slice at z=0.50

if(mod(ix,2)==mod(iy,2))< # choose alternate squares
def: x = -side/2 + ix*spotSpacing
def: y = -side/2 + iy*spotSpacing
transform: field 0 move to $x $y -50
deliver: all

if>

for>
for>

y (cm)

NB: here it generates a series of geometry trasformations on the field

Example: radiation_hazard.inp

create a 'radiation hazard' irradiation pattern
use many spots with gaussian cross-section (programmatically build an rtplan)
use typical interspot spacing for uniform irradiation

def: R=3
def: side = 6*R*2
def: spotSize = R/3

pbXsec=gauss
pbFWHM=$spotSize

func: thSpacing(r) = spotSize/r/3

build rtplan

XY slice at z=0.50

def: ipb = 0 # spot (i.e. pencil beam) index

central disc
for(r in np.arange(0,R,spotSize/3))<
for(th in np.linspace(0,2*pi,int(2*pi/thSpacing(r)),endpoint=False))<
def: x = r*cos(th)
def: y = r*sin(th)
pb: $ipb 1 $x $y
def: ipb = ipb+1
for>
for>

y (cm)

NB: here it generates an rtplan

Material re-definition

Where to look for stopping tables

Original material definition: has to aligned
fSPTablesDir=“sptables" with stopping tables mat.prop file

material: C ; rho = 2.0 ; Ipot = 81.0 ; Lrad = 42.70 ; composition=[C]

material: Graphite ; basedOn = C; rho=2.0 ; Ipot = 78 ; Lrad =42.7

Re-definition of material properties:

- density
- ionization potential
- radiation length

mhd_%*.py scripts

The python scripts that can help manipulation and visualization of
mhd map.

Where: in the SFREDDIR/curr/scripts/mhd_scripts

They are automatically added to the user $PATH and they change
and update with every new version. If you change current fred
version, you change also the mhd_*.py scripts

Please use these tools: If you want to make changes, rename them
and use symbolic links (not copies!)

NEXT STABLE RELEASE

