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FRED fast-MC platform

• particle tracking with class II MC algo in voxelized geometry

• fred-p : clinical stable version for proton therapy (Maastro; 
Kraków; PSI - Zurich)

• fred-C : plugin-level implementation (see Micol’s PhD) 

• fred-em : plugin level implementation, very good agreement in 
the therapeutic energy range for IORT (~10 MeV) and for Flash 
( 70 MeV - 100 MeV) (see preparatory work by Gaia, Patrizia and 
Giacomo)

• Optx : ported to multicore parallelism; adapted to DMF; basis of 
next-generation DMF-aware Flash-therapy TPS
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Windows

Linux

Development driven by MAASTRO 
noozle geometry and A.A. of Mevion machine

Development driven by SBAM activity on 
plugin for Carbon and e.m. upgrade



What’s new in v 3.50 for SBAM

• Input parsing and error reporting: no undefined or unknown 
parameters anymore => safer approach => WYWIWYG

• Multiple verbosity levels : 0 - 5 (minimal to debug) 

• Plugin parameters moved inside plugin<…> section

• mhd scripts : major update of argument parsing and features

• Python preparser (experimental)



Verbosity levels

1. level is taken from FRED_VERBOSE env variable (if present)

2. built-in level is set to 3 (mid verbosity)

3. level can be then defined in input file (see below for sections)

4. cmdline option -V0…-V5 override any previous settings 

verbose: all 0
verbose: physics 0
verbose: delivery 0
verbose: plugin 0
verbose: source 0
verbose: geometry 0
verbose: environment 0
verbose: input 0
verbose: materials 0
verbose: radiobiology 5



Plugin parameters
Now plugin parameters have to be put inside a multiline 

plugin<…> section

…

MCSmode = 0
…

eg. plugin code : 
MCSmodel = getIntParam("MCSmodel",1);
cout <<"MCS model::" << MCSmodel << "   0-->Highland, 
1-->Molierebethe" << endl;

…
plugin<

MCSmode = 0

plugin>
…

Inputfile
Before

Inputfile
Now



Python preparser

Now input files are merged, stripped and evaluated by a python 
preparser.

This allows to expand and extend syntax to pythonic language.

New constructs and statements that have been added:

• def: directive used to define parameters and variables

• func: directive used to define functions

• for()<…> directive implementing loops

• if()<…> directive for conditional execution



Example: looper.inp

# create a spiraling irradiation pattern by displacing the phantom

region: phantom ; L=[10,10,10] ; voxels = [101,101,20]

def: N = 5 # number of turns
def: nspots = 100 # total number of spots
def: Rmax = 3 # major radius
def: Rmin =0 # minor radius

func: r(th) = Rmax-(Rmax-Rmin)*th/(N*2*pi)

for(th in np.linspace(0,N*2*pi,nspots))<

    def: x = r(th)*cos(th)
    def: y = r(th)*sin(th)
    transform: phantom move_to $x $y 0
    deliver: all

for>

NB: here it generates a series of geometry trasformations on the phantom 



Example: chessboard.inp
# create a 'chessboard' irradiation pattern by displacing the field
# use a single spot with square cross-section

nprim=1e4

def: side = 5
def: spotSize = 1
def: spotSpacing = spotSize
def: nspot = int(side/spotSpacing)

pbXsec=box
pbFWHM=$spotSize

region: phantom ; L=[${side*1.5},${side*1.5},1] ; voxels = [200,200,1] ; pivot=[0.5,0.5,0]

for(ix in range(nspot+1))< # control points in x
    for(iy in range(nspot+1))< # control points in y

        if(mod(ix,2)==mod(iy,2))< # choose alternate squares
            def: x = -side/2 + ix*spotSpacing
            def: y = -side/2 + iy*spotSpacing
            transform: field_0 move_to $x $y -50
            deliver: all
        if>
    for>
for>

NB: here it generates a series of geometry trasformations on the field 



Example: radiation_hazard.inp
# create a 'radiation hazard' irradiation pattern
# use many spots with gaussian cross-section (programmatically build an rtplan)
# use typical interspot spacing for uniform irradiation

def: R = 3 
def: side = 6*R*2
def: spotSize = R/3

pbXsec=gauss
pbFWHM=$spotSize

func: thSpacing(r) = spotSize/r/3
…

# build rtplan

def: ipb = 0 # spot (i.e. pencil beam) index 

# central disc
for(r in np.arange(0,R,spotSize/3))<
    for(th in np.linspace(0,2*pi,int(2*pi/thSpacing(r)),endpoint=False))<
        def: x = r*cos(th)
        def: y = r*sin(th)
        pb: $ipb 1 $x $y
        def: ipb = ipb+1
    for>
for>
…
…

NB: here it generates an rtplan  



Material re-definition

fSPTablesDir=“sptables"

material: C ; rho =  2.0 ; Ipot =  81.0 ; Lrad = 42.70 ; composition=[C]

material:  Graphite ; basedOn = C; rho=2.0 ; Ipot = 78 ; Lrad =42.7

Where to look for stopping tables

Original material definition: has to aligned
with stopping tables mat.prop file

Re-definition of material properties:

• density
• ionization potential
• radiation length



mhd_*.py scripts

The python scripts that can help manipulation and visualization of 
mhd map.

Where: in the $FREDDIR/curr/scripts/mhd_scripts

They are automatically added to the user $PATH and they change 
and update with every new version. If you change current fred 
version, you change also the mhd_*.py scripts

Please use these tools: if you want to make changes, rename them 
and use symbolic links (not copies!)



next stable release

3.50


