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General Relativity:
foundations and predictions



General Relativity

Describe the gravitational interaction
through the spacetime curvature

|

First theory to successfully pass
the Solar System Tests

In a static and spherically
Symmetric background

Schwarzschild | Solution
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* lense Thirring Effect

This effect predicted by GR can be obtained starting from a Kerr-like metric

ds®> = A(t,r,0)dt> + B(t,r,0)dr> + C(t,r,0)d6> + D(t,r,0)sin? 8de> + E(t,r,0)dt do
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Correction to the precession of a

gyroscope near a large rotating mass, |m————) ( Q5 = 4(% J
due to the dragging of the spacetime! T




General Relativity:
shortcomings



Shortcomings of GR

Large Scales No theory is capable of solving
these problems at once so far

Universe accelerated expansion

Inflation

Galaxy Rotation Curve

Mass-Radius Diagram of some Neuton Stars
Fine-tuning cosmological parameters

YV VYVYV

Small Scales

» Renormalizability

» GR cannot be quantized

» GR cannot be treated under the same
standard of other interactions

» Discrepancy between theoretical
and experimental value of A

» Classical spacetime singularities




Cosmological Level
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Alternative Theories of Gravity

Classification

* Extended action *f(R)
* Modified Action > f(T)
* Coupling To Scalar fields »@ R

Motivations E E
* Could account for UV and IR quantum corrections o) - «

* Could reproduce both UV and IR cosmic evolution m)
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Modified gravity roadmap Constrained by

GW speed

dRGT

Massive

Gravity
mg > 0 Bigravity oI S :
General ? N E | GW damping

GW dispersion

Relativity Qi | GW oscillations

RrAVvity

Unique theory
of massless g,

Additional

Break fs e e

Assumptions S UL



Is it possible to find out probes and
test-beds for ETGs?

» Geodesic motions around compact objects e.g- SgrA*

> Lense-Thirring effect s ————)

» Exact torsion-balance experiments
» Microgravity experiments from atomic physics

» Violation of Equivalence Principle (effective masses related to further
gravitational degrees of freedom)

12



Case Studies

Horava-Lifshits Gravity

General Scalar-Tensor Gravity
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Both provide Schwarzschild solution as a particular limit
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General Scalar-Tensor Theory

S = / V=3 [f (R,RasR*,¢) + w(¢)VadV0| d'z

Field equations l

+ w(d)V*dV oo ‘ a
! ( )‘) | uv — Vﬁlvl/fR + guquR + ‘nyR# Roy

fRR;w -

_Qf}(vavl/}?:: + vavuRS) + D (fYRpu) + g;wvﬁva (f}'RQB) + w’(@)v;t@vu@ — O

l Klein-Gordon equation

20(6)06 + wy(9)VadV6 — f5=0

Explain late and early time evolution without DM and DE
[ Properties: ]<

Fit the experimental observations at the astrophysical level




Horava-Lifshitz Theory

Theory of quantum gravity capable of
solving the small-scale shortcomings of GR

[ Properties: ] —

Lorentz-Invariance emerges at large distances

Saccessfully passes the Solar System Tests

One possible spherically
symmetric solution:

Schwarzschild solution:
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However.....

Exact spherically symmetric solutions in ETGs are very rare

Weak Field Limit



General description of Weak-Field limit

Often exact solutions in ETGs cannot be found analytically

Motivations:

units, @ is dimensionless).

The typical values of the Newtonian gravitational potentipl
@ are larger than 10~ in the Solar System (in geometrize

Scheme:
Linearization of the metric tensor Ry, — %RQW = 8nGT,
L2 (@) (3)
1+ 900 + G900 +--- Joi T --- ‘
Guv ™~ 9(3) 4 —0;: + g(z) —
0 . ij ij e v = My + My, |h;w| < L
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Some restults provided by PN limit in ETGs
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First case: f (R, R*'R,,,,, @) gravity



Application of the PN limit to
f(R,R"R,, @) gravity

Linearization of the metric tensor

2 4 3 o —_
g N<1*géo)+géo)+--- 95 + ... )_(1+2o+-: 2A; )
;llj . y ¢ . .
J

3) )
a4+ ... ~8ij + g5 + ..

Three potentials arise: two scalar potentials and one vector potential

@, Y are proportional to the power c? (Newtonian limit) while A; is proportional to ¢ and = to c™*
(post-Newtonian limit)

ds? = A(t,r,0)dt> + B(t,r,0)dr® + C(t,r,0)d6? + D(t,r,0) sin? 0dd? + E(t,r,0)dt do

goo = A(t,r,0) \

go; = E(t,7r,0) Kerr spacetime
g;;0 = B(t,r,0) + C(t,r,0) + D(t,r,0)
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Application of the PN limit to
f(R,R""R,, @) gravity

By means of the decomposition of the metric hoo ~ O(2)
Quv = Ny + h;ws ’h;w| < 1. > hOi ~ 0(3)
hij ~  0(2),

The function f, up to the c™* order, can be developed as:
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Result:

Application of the PN limit to
f(R,R"R,, @) gravity

* Form of the vector potential > |A(x) = l)f" [1 — (1 4 my|x|) e=™ 'x} %= J
: GM iy
* Form of the scalar potential > lo(r) = — 1+ g(&,n)e~mrkrT

+[1/3 = g(&m)em ke —

§ e~ myrmT :|

with the definitions:
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The circular velocity of a ball source of mass M and radius R, with the
potentials of Table 1. We indicate case A by a green line, case B by a yellow line,
case D by a red line, case C by a blue line, and the GR case by a magenta

line. The black lines correspond to the Sanders model for —0.95<a<-0.92.

The values of free parameters are w(p ©).. . —1/2,

E==5n=3 my=15*% mg mg=15 *mpg mgz=1% R,
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Lense-Thirring precession in
f(R,R"R,, @) gravity

EG) 1, .. ~f 4l A . 2 .
Qgﬂ" T 5(6”1‘01741;)(60,11;()(/4]‘) = —3\/(Gckmdmf"ﬂ‘Jﬂj) = —¢ ™" (1+myr + m-%"f’g) ng
4 r
g
-
@
, )
Alx) = L, 1 — (1 4+ my|x|)e ™Y x] xxJ Y = RHFR ,
x| K
Q(GR) — ’—5 J 771%.— — 1
LT 4My3 fy (0,0,0©)

For fy — 0 1.e. my — ©, we obtain the same outcome for the gravitational

potential of f(R, ¢)-theory
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Experimental constraints
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Experimental constrains: GP-B

EG —myr GR G
Q(LT ) — _emy (1 + myr+ myzrz)Q(LT ) and QSN — ﬁj

\ 4

(GR) (EG)
n[.] — Q[.l ‘ + QL'r

The Gravity Probe B (GP-B) four gyroscopes aboard an Earth-orbiting satellite
allowed to measure the frame-dragging effect with an error of about 19%

. QLT . QL'T
Measured Predicted obs — GRI _ 0.05
Effect (mas/y) (mas/y) QGR
Geodesic precession 6602 + 18 6606
Lense-Thimring 37.2+7.2 39.2
precession

The changes in the direction of spin gyroscopes, contained in the satellite
orbiting at h = 650 km of altitude and crossing directly over the poles, have

been measured with extreme precision .



Experimental constrains: GP-B

Results:

ofur| 19

1) (1 + r,l}.r* _.1_ 771}.2’.*2) (,—llly'r. <_’_: —
: e (GR)
|Ql.'l' |

&

771},' =

2) my > 7.3 x 10-"m-}

ur = 0l + Al
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Experimental constrains: LARES

The Laser Relativity Satellite (LARES) massion of the Italian Space Agency is
designed to test the frame dragging and the Lense-Thirring effect, to within 1%

of the value predicted in the framework of GR

The body of this satellite has a diameter of about 36.4 cm and weights
about 400 kg , i

It was inserted in an orbit with
1450 km of perigee, an inclination
of 69.5 * 1 degrees and eccentricity
9.54 x 107*

It allows to obtain a stronger
constraint
for my:

) " ) ok 5 SZ 'l‘
(1 +myr* +my=r*=)e""v’ S—’ :LF | = (.01
L

From which we obtain my2 1.2 X107%m™! 28



LARES and GP-B

Summang up, using data from the Gravity Probe B and LARES massions, we

obtain constraints on my.

(GR) 2 1

LI ) }/’ b] b

my > 1.2 x 10 "m™!

my > 7.3 x 10-7m-1

This result shows that space-based experiments can be used
to test extensively parameters of fundamental theories

Perspective:
Put a further limit to the mass by GINGER ,




GINGER results: the case of
Horava-Lifshitz Gravity

30



Application of PN limit to
Horava-Lifshitz Gravity

-2
"~ (v.iRjkV'iRik — ViR VIR* — éviRviR) }

2w

S = /d*‘l dt \/— {3 (K;; K7 — \K?) —
7 \ij

Ii’ij = L\ (gz_) Vi_Nj — le\",’_) K? = gij]\‘"i‘j

Linearization of the metric tensor

L (2) (4) (3)
Guv ™~ (3) N (2)
Goi T - —0ij +g;; ...

With similar computations as the previous case, the ratio between the
Horava-Lifshitz and General Relativity Gyroscopic precession is —

0% 1 G a \[*

.‘-HL . . 2 H
=—(14+2—a; — 2—) . > a4, a, constants to be constrained

Q¢ 3 ( Gn ay with b2

Q% —— Gyroscopic precession

G — * effective gravitational constant
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.QG 1 G ao
HE — (1+-2 "4y —2—=
g 3 TN a

It has been shown that, in order for the matter
coupling to be consistent with solar system tests,
the gauge field and the Newtonian potential must
be coupled to matter in a specific way, but there are
no indication on how to obtain the precise
prescription from the action principle. Recently
such a prescription has been generalised and a
scalar-tensor extension of the theory has been
developed to allow the needed coupling to emerge

Importance of constraining a4, a,

Matter action

Sy = /dtd3:1:N\/§ Ly (N, Ny, iy ¥n)

Lapse function

/

in the IR without spoiling the power-counting N (1 — ax O')N, . Scalar Potential
lizability of the theory. i AT ]
renormalizability of the theory N Nt 4 Ng¥ Vj(,b,
Gij (1 —a20)gij,
Vector
0= with A=—-¢+ N'V;0+ §NV7’¢V1¢.

a4, a, are then related to the potentials and can be constrained by GINGER measure as.’’



Terrestial experiment: GINGER

GINGER measures the difference in frequence of light of two beams circulating in a laser cavity in

opposite directions. This translates into a time difference between the right-handed beam
propagation time and the left-handed one

:_2\/977{90%12

The difference in time can be linked to the Sagnac frequence s, measured by GINGER

Perimeter Laser wavelength

7

fo—f P P
C(sT:N\()\_}_—/\_}):NC(T_*—) —7(5‘]0:795

|

Wavelength difference

Splitting in terms of frequence
between the two beams
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GIGNER in Horava-Lifshitz Gravity

- . 202,/ i .
0T = —24/900 f gﬂdsz &) (s = _ZC VI [ 9o ds"
goo PA 9oo

In Horava-Lifshitz [l gravity, it is

(2 cosf cosa + sinf sin )

Qg = ﬁQE [cos(9+a) — (1_|_ ial _ @) GM in orsin g — Glg

P\ Gy a; ) 2R 2R3

Sagnac term

Lense-Thirring term
c A > Area encircled by the light beams
. a > Angle between the local radial direction and the normal to the plane of the array-laser ring
- 0 » Colatitude of the laboratory
° QE » Rotation rate of the Earth as measured in the local reference frame
e Ig » Momentum of Inertia
e P » Perimeter ”
e A » Laser wavelength




Horava-Lifshitz vs General Relativity

G = GN
General Relativity | ~
4A M
Og = P_AQE [cos(G-l—a) — Gch sin asin S

Glg
2R3

(2 cos()cosa—l—sinﬁsina)] o

\ G =Gy Horava-Lifshitz Gravity

v

Og = %QE [cos(0+a) — (1—}— %al — Z—j) fzj\; sin o sin 0

Glg
2R3

(2cosf cosa + sinfsin ) ]
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Perspectives:

Free parameters to constrain by GINGER

M I
Qg = ﬁQE [cos(@-l—a) — (1+ ial — @) G—sinasin@— Glp

< GnN a1 ) 2R c2R3

GINGER measure

(2 cosf cosa + sinf sin )

36



Advantages to use GINGER

* The actual precision of GINGERINO is 1/1000 in the geodesic term, 1/100 in the LT term

* GINGER experiment should overcome such uncertainty providing a precision of 1/1000 in
the LT term

 The presence of two rings yields a dynamic measure of the angle a

——sinasin @ —

Ng = % Qg [cos(@ + a) — (1 + Gn a; — o, ) @R 2R3 (2 cos @ cosa + sinHSina)]
| : f
Geodesic Term LT Term
Notice that:

o While the measure of the LT term can constrain the value of G, from the
measure of the geodesic term we can get the value of a, and a-

« The precision of GINGERINO is 10~1> rad/s, which corresponds to a precision of 1.4 - 10~°
with respect to the dominant term.




Conclusions



Conclusions . -, +he,  |he| <L

In the context of ETGs, we have studied the linearized field equations in the limit of weak
gravitational fields and small velocities generated by rotating gravitational sources, aimed
at constraining the free parameters, which can be seen as effective masses (or lengths).

The precession of spin of a gyroscope orbiting around a rotating gravitational source can be
studied.

Gravitational field gives rise, according to GR predictions, to geodesic and Lense-Thirring
processions, the latter being strictly related to the off-diagonal terms of the metric tensor
generated by the rotation of the source (Kerr metric)

The gravitational field generated by the Earth can be tested by Gravity Probe B and LARES
satellites. These experiments tested the geodesic and Lense-Thirring spin precessions with
high precision.

The corrections on the precession induced by scalar, tensor and curvature corrections can
be measured and confronted with data.
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Conclusions

In f (R, R*™R,,y, @) gravity, GP-B and LARES satellites provide

— ™~

,'ny > 7.3 x 10— 7m—1 my > 1.2 x 10" °m™!

Perspective: constraint on m, by GINGER

Perspective: constraints on a,, a, by GINGER

In Horava-Lifshitz gravity, the weak-field limit provide

5T 4AQE [COS(9+Q) _ (1 + ﬁal — %) GM .

5 sin @ sin «v
c GnN a, ) c

G1
_ CQRE; (2 cos 0 cos v + sin f sin a)]
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