Workshop sulla Gravitazione Sperimentale: Misure laser, fisica fondamentale e applicazioni in INFN-CSN2 12 e 13 Novembre 2020

Theoretical background of the LARASE and SaToR-G Experiments and the LARASE results in the field of Gravitation

David M. Lucchesi IAPS/INAF

INFN Tor Vergata

<u>david.lucchesi@inaf.it</u>

On behalf of the SaToR-G Experiment

Outline

- Introduction to SaToR-G high level goals
- Einstein Equivalence Principle and Metric theories of gravity
- General Relativity over time
- What to measure in the weak field and slow motion limit of GR
- Results of the LARASE experiment: Part I

Introduction to SaToR-G high level goals

- Started in 2020, SaToR-G (Satellites Tests of Relativistic Gravity) will expand the activities carried on by the LAser RAnged Satellites Experiment (LARASE, 2013-2019), investigating possible experimental signatures of deviation from General Relativity (GR)
- Similarly to LARASE, SaToR-G is dedicated to measurements of the gravitational interaction in the Weak-Field and Slow-Motion (WFSM) limit of GR by means of laser tracking to geodetic passive satellites orbiting around the Earth
- SaToR-G exploits the improvement of the dynamical model of the two LAGEOS and LARES satellites performed by LARASE. These satellites represent the proof-masses of the experiment
- While for LARASE the main scientific target was a reliable and robust measurement of the Lense-Thirring effect, SaToR-G focuses on verifying the gravitational interaction beyond the predictions of GR, looking for possible effects connected with new physics, and foreseen by different alternative theories of gravitation

Weak Equivalence Principle (WEP)

- two different bodies fall with the same acceleration: Universality of the Free Fall (UFF)
- the inertial mass is proportional to the gravitational (passive) mass
- the trajectory of a freely falling "test" body is independent of its internal structure and composition
- in every local and non-rotating falling frame, the trajectory of a freely falling test body is a straight line, in agreement with special relativity

Einstein Equivalence Principle (EEP)

- WEP
- Local Lorentz Invariance (LLI)

The outcome of any local non-gravitational experiment is independent of the velocity of the freely-falling reference frame in which it is performed

• Local Position Invariance (LPI)

The outcome of any local non-gravitational experiment is independent of where and when in the universe it is performed

Clifford M. Will, Theory and Experiment in Gravitational Physics. Cambridge University Press, Ed. 1981 and Ed. 2018

Metric theories

- GR is a metric theory of gravity and all metric theories obey the EEP
- Indeed, the experimental results supporting the EEP supports the conclusion that the only theories of gravity that have a hope of being viable are metric theories, or possibly theories that are metric apart from very weak or short-range non-metric couplings (as in string theory):
- 1. there exist a symmetric metric
- 2. tests masses follow geodesics of the metric
- 3. in Local Lorentz Frames, the non-gravitational laws of physics are those of Special Relativity

Metric theories

- Metric theories different from **GR** provide additional fields (Scalars, Vectors, Tensors, ...) beside the metric tensor $g_{\alpha\beta}$, that act as "new" gravitational fields
- The role of these gravitational fields is to "mediate" how the matter and the nongravitational fields generate the gravitational fields and produce the metric

- the spacetime geometry tells mass-energy how to move as in GR
- but mass-energy tells spacetime geometry how to curve in a different way from GR
- and the metric alone acts back on the mass in agreement with EEP

Metric theories

- Metric theories different from **GR** provide additional fields (Scalars, Vectors, Tensors, ...) beside the metric tensor $g_{\alpha\beta}$, that act as "new" gravitational fields
- The role of these gravitational fields is to "mediate" how the matter and the nongravitational fields generate the gravitational fields and produce the metric

- the spacetime geometry tells mass-energy how to move as in GR
- but mass-energy tells spacetime geometry how to curve in a different way from GR
- and the metric alone acts back on the mass in agreement with EEP

Metric theories

- Metric theories different from **GR** provide additional fields (Scalars, Vectors, Tensors, ...) beside the metric tensor $g_{\alpha\beta}$, that act as "new" gravitational fields
- The role of these gravitational fields is to "mediate" how the matter and the nongravitational fields generate the gravitational fields and produce the metric

- the spacetime geometry tells mass-energy how to move as in GR
- but mass-energy tells spacetime geometry how to curve in a different way from GR
- and the metric alone acts back on the mass in agreement with EEP

Metric theories

- Metric theories different from **GR** provide additional fields (Scalars, Vectors, Tensors, ...) beside the metric tensor $g_{\alpha\beta}$, that act as "new" gravitational fields
- The role of these gravitational fields is to "mediate" how the matter and the nongravitational fields generate the gravitational fields and produce the metric

- the spacetime geometry tells mass-energy how to move as in GR
- but mass-energy tells spacetime geometry how to curve in a different way from GR
- and the metric alone acts back on the mass in agreement with EEP

Metric theories

the field equations and the spacetime metric are different with respect to GR

- Metric theories different from **GR** provide additional fields (Scalars, Vectors, Tensors, ...) beside the metric tensor $g_{\alpha\beta}$, that act as "new" gravitational fields
- The role of these gravitational fields is to "mediate" how the matter and the nongravitational fields generate the gravitational fields and produce the metric

- the spacetime geometry tells mass-energy how to move as in GR
- but mass-energy tells spacetime geometry how to curve in a different way from GR
- and the metric alone acts back on the mass in agreement with EEP

Metric theories and the Strong Equivalence Principle (SEP)

A very fundamental question is:

- What is the nature of gravity in different Metric theories?
 - ✓ A way to answer to this very important question is to investigate the "dynamical character" of the theory

Metric theories and the Strong Equivalence Principle (SEP)

A very fundamental question is:

- What is the nature of gravity in different Metric theories?
 - 1. A way to answer to this very important question is to investigate the "dynamical character" of the theory

Metric theories and the Strong Equivalence Principle (SEP)

A very fundamental question is:

- What is the nature of gravity in different Metric theories?
 - 1. A way to answer to this very important question is to investigate the "dynamical character" of the theory
 - 2. A second important aspect is to introduce gravity itself in the experiment
 - ✓ That is the inclusion of bodies with <u>self-gravitational</u> interactions as well as experiments that involve <u>gravitational forces</u>

✓ This leads to the so-called Strong Equivalence Principle, satisfied by GR but not by the other Metric theories of gravity

Strong Equivalence Principle (SEP)

- WEP is valid for self-gravitating bodies as well as for test bodies:
 Gravitational Weak Equivalence Principle (GWEP)
- Local Lorentz Invariance (LLI)

The outcome of any local non-gravitational experiment is independent of the velocity of the freely-falling reference frame in which it is performed

• Local Position Invariance (LPI)

The outcome of any local non-gravitational experiment is independent of where and when in the universe it is performed

Einstein Equivalence Principle and Metric

theories of gravity

Tests of the WEP

Clifford M. Will, *Theory and Experiment in Gravitational Physics*. Cambridge University Press, Ed. 2018

Tests of the SEP

Is there a different contribution of gravitational binding energy (self-energy) to its gravitational (passive) mass and its inertial mass?

If so, this is known as the Nordvedt Effect and is directly related to possible SEP violations (massive bodies)

$$\begin{split} m_g &= m_i + \eta_N E_g = m_i \left(1 + \eta_N \frac{E_g}{m_i} \right) & \eta_N = (4\beta - \gamma - 3) - \frac{10}{3}\xi - \alpha_1 + \frac{2}{3}\alpha_2 - \frac{2}{3}\zeta_1 - \frac{1}{3}\zeta_2 \\ \vec{a} &= -\frac{GM_{\odot}}{r^2} \frac{m_g}{m_i} \hat{r} = -\frac{GM_{\odot}}{r^2} \left(1 + \eta_N \frac{E_g}{m_i} \right) \hat{r} & \begin{cases} \frac{E_g}{m_i} \simeq 4.6 \times 10^{-10} \ Earth \\ \frac{E_g}{m_i} \simeq 0.2 \times 10^{-10} \ Moon \end{cases} \end{split}$$

If $\eta_N \neq 0$, the Earth and the Moon must fall in the field of the Sun with a little bit different acceleration

$$\delta \vec{a} = -\frac{GM_{\odot}}{r^2} \eta_N \left(\frac{E_g}{m_i} \Big|_{\oplus} - \frac{E_g}{m_i} \Big|_M \right) \hat{r} \qquad |\boldsymbol{\eta}_N| = (\mathbf{4}.\mathbf{4} \pm \mathbf{4}.\mathbf{5}) \times \mathbf{10^{-4}} \quad \text{From Lunar Laser Ranging (LLR) measurements}$$

Einstein Equivalence Principle and Metric theories of gravity C.M. Will Living Rev. Relativity, 17, (2014), 4 Metric Potentials

The parametrized post-Newtonian (PPN) formalism

Post-Newtonian formalism or **PPN** formalism details the parameters in which different theories of gravity, under **WFSM** conditions, can differ from Newtonian gravity

Metric

$$g_{00} = -1 + 2U - 2\beta U^{2} - 2\xi \Phi_{W} + (2\gamma + 2 + \alpha_{3} + \zeta_{1} - 2\xi)\Phi_{1} + 2(3\gamma - 2\beta + 1 + \zeta_{2} + \xi)\Phi_{2} + 2(1 + \zeta_{3})\Phi_{3} + 2(3\gamma + 3\zeta_{4} - 2\xi)\Phi_{4} - (\zeta_{1} - 2\xi)\mathcal{A} - (\alpha_{1} - \alpha_{2} - \alpha_{3})w^{2}U - \alpha_{2}w^{i}w^{j}U_{ij} + (2\alpha_{3} - \alpha_{1})w^{i}V_{i} + \mathcal{O}(\epsilon^{3}),$$
$$g_{0i} = -\frac{1}{2}(4\gamma + 3 + \alpha_{1} - \alpha_{2} + \zeta_{1} - 2\xi)V_{i} - \frac{1}{2}(1 + \alpha_{2} - \zeta_{1} + 2\xi)W_{i} - \frac{1}{2}(\alpha_{1} - 2\alpha_{2})w^{i}U - \alpha_{2}w^{j}U_{ij} + \mathcal{O}(\epsilon^{5/2}),$$
$$g_{ij} = (1 + 2\gamma U)\delta_{ij} + \mathcal{O}(\epsilon^{2}).$$

Stress-Energy Tensor

$$T^{00} = \rho (1 + \Pi + v^2 + 2U),$$

$$T^{0i} = \rho v^i \left(1 + \Pi + v^2 + 2U + \frac{p}{\rho} \right),$$

$$T^{ij} = \rho v^i v^j \left(1 + \Pi + v^2 + 2U + \frac{p}{\rho} \right) + p \delta^{ij} (1 - 2\gamma U).$$

$$J_{-}|\mathbf{x} - \mathbf{x}'|$$

$$U_{ij} = \int \frac{\rho'(x - x')_i(x - x')_j}{|\mathbf{x} - \mathbf{x}'|^3} d^3x',$$

$$\Phi_W = \int \frac{\rho'\rho''(\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3} \cdot \left(\frac{\mathbf{x}' - \mathbf{x}''}{|\mathbf{x} - \mathbf{x}''|} - \frac{\mathbf{x} - \mathbf{x}''}{|\mathbf{x}' - \mathbf{x}''|}\right) d^3x' d^3x'',$$

$$\mathcal{A} = \int \frac{\rho'[\mathbf{v}' \cdot (\mathbf{x} - \mathbf{x}')]^2}{|\mathbf{x} - \mathbf{x}'|^3} d^3x',$$

$$\Phi_1 = \int \frac{\rho'v'^2}{|\mathbf{x} - \mathbf{x}'|} d^3x',$$

$$\Phi_2 = \int \frac{\rho'U'}{|\mathbf{x} - \mathbf{x}'|} d^3x',$$

$$\Phi_3 = \int \frac{\rho'\Pi'}{|\mathbf{x} - \mathbf{x}'|} d^3x',$$

$$\Phi_4 = \int \frac{\rho'\Pi'}{|\mathbf{x} - \mathbf{x}'|} d^3x',$$

$$V_i = \int \frac{\rho'v'_i}{|\mathbf{x} - \mathbf{x}'|} d^3x',$$

$$W_i = \int \frac{\rho'[\mathbf{v}' \cdot (\mathbf{x} - \mathbf{x}')](x - x')_i}{|\mathbf{x} - \mathbf{x}'|^3} d^3x'.$$

 $U = \int \frac{\rho'}{1 - r'} d^3 x',$

The parametrized post-Newtonian (PPN) formalism

C.M. Will Living Rev. Relativity, 17, (2014), 4

Parameter	What it measures relative to GR	Value in GR	Value in semi- conservative theories	Value in fully conservative theories	Theory	Arbitrary functions or constants	Cosmic matching parameters	PPN parameters				
								γ	eta	ξ	α_1	α_2
γ	How much space-curvature produced by unit rest mass?	1	γ	γ	General relativity	none	none	1	1	0	0	0
β	How much "nonlinearity" in the superposition law for gravity?	1	β	β	Scalar-tensor Brans-Dicke	ωвр	φŋ	$1 + \omega_{\rm BD}$	1	0	0	0
ξ	Preferred-location effects?	0	ξ	ξ			70	$2 + \omega_{BD}$)			
α_1	Preferred-frame effects?	0	α_1	0	General, $f(R)$	$A(\varphi), V(\varphi)$	$arphi_0$	$\frac{1+\omega}{2+\omega}$	$1 + \frac{\lambda}{4 + 2\omega}$	0	0	0
α_2		0	α_2	0								
α_3		0	0	0	Vector-tensor							
α_3	Violation of conservation	0	0	0	Unconstrained Finstein Æther	$\omega, c_1, c_2, c_3, c_4$	u	γ'	β'	0	α'_1	α'_2
ζ_1	of total momentum?	0	0	0	Khronometric	$\alpha_{\iota}, \beta_{\iota}, \lambda_{\iota}$	none	1	1	0	α'_1	α_2'
ζ_2		0	0	0		, , , - , , - , ,		-		-	1	2
ζ3		0	0	0								
ζ_4		0	0	0	Tensor–Vector–Scalar	k,c_1,c_2,c_3,c_4	ϕ_0	1	1	0	α'_1	α'_2

- The history of General Relativity (GR), together with the history of the so-called Alternative Theories of Gravitation (ATG), can be roughly divided into three main periods:
 - $1915 \rightarrow 1960$
 - $1960 \rightarrow 1980$
 - 1980 \rightarrow Today

Clifford M. Will, Theory and Experiment in Gravitational Physics. Cambridge University Press, Ed. 1981 and Ed. 2018

Classical tests of GR:

- Gravitational redshift
- Deflection of light
- Precession of the perihelion

• Several difficulties with GR:

- Lack of an effective experimental support
- Curved spacetime: concepts and consequences
- Mach's Principle

• ATG:

- Whitehead (1922)
- Birkhoff (1943)
- Belifante/Swihart (1957)

• Dicke framework + PPN framework (Will & Nordtvedt):

- Schiff (1960)
- Dicke (1960)
- Bertotti (1962)
- Nordtvedt & Will (1968–1972)

• New theories with respect to GR:

- New effects to be predicted
- Differences with GR
- PPN parameters ≠ from those of GR

- Brans-Dicke (1960)
- Will-Nordtvedt (1972)
- Rosen (1973)

Schiff (1960)

• L.I. Schiff, On Experimental Tests of the General Theory of Relativity. *American Journal of Physics*, Vol. 28, Issue 4, pp. 340-343 (1960).

On Experimental Tests of the General Theory of Relativity*

L. I. SCHIFF Institute of Theoretical Physics, Department of Physics, Stanford University, Stanford, California (Received October 6, 1959)

This paper explores the extent to which the three "crucial tests" support the full structure of the general theory of relativity, and do not merely verify the equivalence principle and the special theory of relativity, which are well established by other experimental evidence. It is shown how the first-order changes in the periods of identically constructed clocks and the lengths of identically constructed measuring rods can be found without using general relativity, and how the red shift and the deflection of light can be computed from them. Only the planetary orbit precession provides a real test of general relativity. Terrestrial or satellite experiments that would go beyond supplying corroborative evidence for the equivalence principle and special relativity would be extremely difficult to perform, and would, for example, require a frequency standard with an accuracy somewhat better than one part in 10¹⁸.

Schiff (1960)

 L.I. Schiff, On Experimental Tests of the General Theory of Relativity. *American Journal of Physics*, Vol. 28, Issue 4, pp. 340-343 (1960).

On Experimental Tests of the General Theory of Relativity*

L. I. SCHIFF Institute of Theoretical Physics, Department of Physics, Stanford University, Stanford, California (Received October 6, 1959)

This paper explores the extent to which the three "crucial tests" support the full structure of the general theory of relativity, and do not merely verify the equivalence principle and the special theory of relativity, which are well established by other experimental evidence. It is shown how the first-order changes in the periods of identically constructed clocks and the lengths of identically constructed measuring rods can be found without using general relativity, and how the red shift and the deflection of light can be computed from them. Only the planetary orbit precession provides a real test of general relativity. Terrestrial or satellite experiments that would go beyond supplying corroborative evidence for the equivalence principle and special relativity would be extremely difficult to perform, and would, for example, require a frequency standard with an accuracy somewhat better than one part in 10¹⁸.

- 1. Gravitational redshift
- 2. Deflection of light
- 3. Orbit precession

Schiff (1960)

• L.I. Schiff, On Experimental Tests of the General Theory of Relativity. *American Journal of Physics*, Vol. 28, Issue 4, pp. 340-343 (1960).

On Experimental Tests of the General Theory of Relativity*

L. I. SCHIFF Institute of Theoretical Physics, Department of Physics, Stanford University, Stanford, California (Received October 6, 1959)

This paper explores the extent to which the three "crucial tests" support the full structure of the general theory of relativity, and do not merely verify the equivalence principle and the special theory of relativity, which are well established by other experimental evidence. It is shown how the first-order changes in the periods of identically constructed clocks and the lengths of identically constructed measuring rods can be found without using general relativity, and how the red shift and the deflection of light can be computed from them. Only the planetary orbit precession provides a real test of general relativity. Terrestrial or satellite experiments that would go beyond supplying corroborative evidence for the equivalence principle and special relativity would be extremely difficult to perform, and would, for example, require a frequency standard with an accuracy somewhat better than one part in 10¹⁸.

- 1. Gravitational redshift
- 2. Deflection of light
- 3. Orbit precession

Only the planetary orbit precession provides a real test of general relativity

The Dicke's Framework (1960)

- 1. Spacetime is a 4-dimensional differentiable manifold, with each point in the manifold corresponding to a physical event. The manifold need not a priori have either a metric or an affine connection
 - The hope is that experiment will force us to conclude that it has both
- 2. The equations of gravity and the mathematical entities in them are to be expressed in a form that is independent of the particular coordinates used, i.e., in covariant form

Dicke imposes two constraints:

- 1. Gravity must be associated with one or more fields of tensor character: scalars, vectors and tensors of various ranks
- 2. The dynamical equations that govern gravity must be derivable from an invariant action principle

The Dicke's Framework (1960)

From Dicke's Framework, theorists have been able to formulate a set of criteria that any theory of gravitation should satisfy if it is to be viable:

- 1. It must be complete
- 2. It must be self-consistent
- 3. It must be relativistic
- 4. It must have the correct Newtonian limit

THE ASTROPHYSICAL JOURNAL, 163:595-610, 1971 February 1 © 1971. The University of Chicago All rights reserved Printed in USA.

THEORETICAL FRAMEWORKS FOR TESTING RELATIVISTIC GRAVITY. I. FOUNDATIONS*

KIP S. THORNE AND CLIFFORD M. WILL[†] California Institute of Technology, Pasadena, California *Received 1970 August 24*

ABSTRACT

This is the first in a series of theoretical papers which will discuss the experimental foundations of general relativity This paper reviews, modifies, and compares two very different theoretical frameworks, within which one devises and analyzes tests of gravity. The *Dicke framework* assumes almost nothing about the nature of gravity; and it uses a variety of experiments to delineate the gross features of the gravitational interaction. Two of its tentative conclusions (the presence of a metric, and the "gravitational response equation," $\nabla \cdot T = 0$, for stressed matter) become the postulates of the *Parametrized Post-Newtonian framework*. The PPN framework encompasses most, if not all, of the theories of gravity that are currently compatible with experiment. Future papers in this series will develop the PPN framework in detail, and will use it to analyze a variety of relativistic gravitational effects that should be detectable in the solar system during the coming decade.

Bertotti (1962)

• B. Bertotti, D. Brill and R. Krotkov, Gravitation: Experiments on gravitation, An introduction to current research, ed. L. Witten, J. Wiley and Sons Inc., New York, 1-48, 1962.

This is a review of experiments in gravitation, and it proves how thin and feeble was (at that time) the experimental evidence supporting GR chapter 1· Bruno Bertotti,* Dieter Brill,‡ and Robert Krotkov‡

Experiments on Gravitation

This chapter is devoted to a review of the connections between theory and experiments in the physics of gravitation. In Section 1–1 we stress the theoretical importance of an invariant definition of any observable quantity and discuss the idea of inertial frame of reference. Section 1–2 contains an outline of the fundamental concepts and experiments which play a role in an understanding of gravitation. In Section 1–3 we summarize the existing evidence concerning the three specific tests of general relativity: the gravitational frequency shift, the deflection of light rays, and the anomalous advance of the perihelion of a planet. No mention is made of the connections between general relativity and cosmological theories, to which a special chapter of this book is devoted.

We wish to express our gratitude to Professor R. H. Dicke for his help and his interest; we acknowledge also an enlightening correspondence with Professor G. M. Clemence in connection with astronomical observations.

Bertotti (2003)

 B. Bertotti, L. Iess, & P. Tortora: A test of general relativity using radio links with the CASSINI spacecraft. *Nature*, 425, 374-376, 2003

The most precise measurement of the PPN parameter γ :

 $\gamma - 1 = (2.1 \pm 2.2) \times 10^{-5}$

letters to nature

A test of general relativity using radio links with the Cassini spacecraft

B. Bertotti¹, L. less² & P. Tortora³

¹Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Via U. Bassi 6, I-27100, Pavia, Italy ²Dipartimento di Ingegneria Aerospaziale ed Astronautica, Università di Roma "La Sapienza", Via Eudossiana 16, I-00184, Roma, Italy ³II Facoltà di Ingegneria, Università di Bologna, Via Fontanelle 40, I-47100, Forlì,

Italy

According to general relativity, photons are deflected and delayed by the curvature of space-time produced by any mass¹⁻³. The bending and delay are proportional to $\gamma + 1$, where the parameter γ is unity in general relativity but zero in the newtonian model of gravity. The quantity $\gamma - 1$ measures the degree to which gravity is not a purely geometric effect and is affected by other fields; such fields may have strongly influenced the early Universe, but would have now weakened so as to produce tinybut still detectable-effects. Several experiments have confirmed to an accuracy of $\sim 0.1\%$ the predictions for the deflection^{4,5} and delay⁶ of photons produced by the Sun. Here we report a measurement of the frequency shift of radio photons to and from the Cassini spacecraft as they passed near the Sun. Our result, $\gamma = 1 + (2.1 \pm 2.3) \times 10^{-5}$, agrees with the predictions of standard general relativity with a sensitivity that approaches the level at which, theoretically, deviations are expected in some cosmological models7,8.

Whitrow and Morduch (1965)

 G.J. Whitrow and G.E. Morduch, Relativistic Theories of Gravitation, A comparative analysis with particular reference to astronomical tests, *Vistas in Astronomy* 6, 1-67, 1965

This is a review of nominally viable (at that time) ATG

Relativistic Theories of Gravitation

A comparative analysis with particular reference to astronomical tests

by

G. J. WHITROW

Department of Mathematics Imperial College of Science and Technology, London

and

G. E. MORDUCH Elliott Brothers (London)

INTRODUCTION

DESPITE the initial successes of Einstein's general theory of relativity, attempts to produce a satisfactory Lorentz-invariant theory of gravitation have continued until the present day. Nevertheless, no general analysis has yet been made of Lorentzinvariant theories of gravitation, nor have the respective results predicted by them been systematically compared with the corresponding formulae derived from general relativity. It is the object of this investigation to make such an analysis, with particular reference to astronomical tests.

Although some theories are clearly more viable than others, our attitude towards them is impartial in the sense that we do not suggest that any one of them is preferable to general relativity. Nor do we contest the view that general relativity makes a stronger appeal on methodological and aesthetic grounds than any other theory of gravitation yet devised. Although we take the opportunity of presenting a concise critical account of the foundations of Einstein's theory, our main concern is with its empirically testable predictions. It is on this basis that we finally compare the theories here considered.

The Brans-Dicke ATG (1961)

The Brans-Dicke's theory arises from Dicke's idea to turn Mach's principle (as well as Dirac's Large Number Hypothesis) into a gravity theory, since GR was unsatisfactory from this point of view

- C. Brans and R.H. Dicke, Mach's principle and a relativistic theory of gravitation, *Phys. Rev.* 124, 925-935, 1961
- R.H. Dicke, Mach's principle and invariance under transformations of units, *Phys. Rev.* 125, 2163-2167, 1962
- R.H. Dicke, The Theoretical Significance of Experimental Relativity, Blackie and Son Ltd. London and Glasgow, 1964
- R.H. Dicke, Scalar-tensor gravitation and the cosmic fireball, Astrophys. J. 152, 1-24, 1968

P. Jordan, Zum gegenwärtigen Stand der Diracschen kosmologischen Hypothesen, Zeitschrift für Physik 157, 112-121, 1959

The Brans-Dicke ATG (1961)

PHYSICAL REVIEW

VOLUME 124, NUMBER 3

NOVEMBER 1, 1961

Mach's Principle and a Relativistic Theory of Gravitation*

C. BRANS[†] AND R. H. DICKE Palmer Physical Laboratory, Princeton University, Princeton, New Jersey (Received June 23, 1961)

The role of Mach's principle in physics is discussed in relation to the equivalence principle. The difficulties encountered in attempting to incorporate Mach's principle into general relativity are discussed. A modified relativistic theory of gravitation, apparently compatible with Mach's principle, is developed.

INTRODUCTION

I is interesting that only two ideas concerning the nature of space have dominated our thinking since the time of Descartes. According to one of these pictures, space is an absolute physical structure with properties of its own. This picture can be traced from Descartes vortices¹ through the absolute space of Newton,² to the ether theories of the 19th century. The contrary view that the geometrical and inertial properties of space are meaningless for an empty space, that the physical properties of space have their origin in the matter contained therein, and that the only meaningful motion of a particle is motion relative to other matter in the universe has never found its complete expression in a physical theory. This picture is small mass, its effect on the metric is minor and can be considered in the weak-field approximation. The observer would, according to general relativity, observe normal behavior of his apparatus in accordance with the usual laws of physics. However, also according to general relativity, the experimenter could set his laboratory rotating by leaning out a window and firing his 22-caliber rifle tangentially. Thereafter the delicate gyroscope in the laboratory would continue to point in a direction nearly fixed relative to the direction of motion of the rapidly receding bullet. The gyroscope would rotate relative to the walls of the laboratory. Thus, from the point of view of Mach, the tiny, almost massless, very distant bullet seems to be more important that the massive, nearby walls of the laboratory in determining

The Brans-Dicke ATG (1961)

The Brans-Dicke's theory played a primary role in the development of an intense experimental activity to verify the gravitational interaction during the late 1960s and throughout the 1970s

$$S = \frac{1}{16\pi G} \int \left(\phi R - \frac{\omega}{\phi} g^{\alpha\beta} \phi_{,\alpha} \phi_{,\beta} \right) \sqrt{-g} d^4 x + S_{ng} \qquad S_{GR} = \frac{1}{16\pi G} \int R \sqrt{-g} d^4 x + S_{ng}$$

$$G_{\alpha\beta} = \frac{8\pi G}{\phi} T_{\alpha\beta} + \frac{\omega}{\phi^2} \left(\phi_{,\alpha} \phi_{,\beta} - \frac{1}{2} g_{\alpha\beta} \phi_{,\mu} \phi^{,\mu} \right) + \frac{1}{\phi} \left(\phi_{;\alpha\beta} - g_{\alpha\beta} \Box_g \phi \right) \qquad G_{\alpha\beta} = 8\pi G T_{\alpha\beta}$$

$$\Box_g \phi = \frac{8\pi G}{3 + 2\omega} T$$

Where ϕ is a scalar field and ω represents the dimensionless Dicke's coupling constant: it is tested by the experiments

$$\omega \rightarrow \infty \Rightarrow Brans - Dicke \rightarrow General Relativity$$

• Beyond Einstein's theory of GR:

- String theory and its extensions
- Lorentz Symmetry Violations
- 5th force
- Rotation curves of Galaxies
- Acceleration of the Universe
- New theories with respect to GR?
 - Not exactly or not only
 - To extend GR into different regimes beyond those where it had been "well" tested so far:
 - cosmological scale
 - Strong fields
 - Due to several motivations:
 - Particle physics
 - Quantum gravity
 - Cosmology

• ATG:

- Scalar-Tensor theories
- Vector-Tensor theories
- Tensor-Vector-Scalar theories

String Theory and its extensions (late 1960s \rightarrow about 2000)

- The point-like particle of particle physics is replaced by a string characterized by several vibrational states
- One of these vibrational states corresponds to the graviton, i.e. to the particle that mediates the gravitational interaction
- The theory of strings, since evolve and interact according to the rules of quantum mechanics, automatically describes quantum gravity

String Theory

- In the small string-coupling of the theory, String Theory predicts a relativistic theory very close to GR ...
 - It is Brans-Dicke theory with $\omega = -1$, but ...
 - The scalar field ϕ would acquire a large mass (via spontaneous symmetry breaking), with $\mu \propto 1/\lambda$, and its effect would be exponentially suppressed on any macroscopic scale
 - This would restore a theory of gravity very close to GR with an high level of accuracy

Lorentz Symmetry Violations

- We restrict to the gravitational interaction only. In this regard, there are some aspects to take into consideration:
 - 1. Possible evidence of new physics "beyond" Einstein, such as apparent, or "effective" violations of Lorentz invariance might result from certain models of quantum gravity

$$\mathcal{L}_{\mathcal{P}} = \sqrt{\frac{hG}{2\pi c^3}} \cong 1.6 \times 10^{-33} \, cm$$

Lorentz Symmetry Violations

- We restrict the considerations to the gravitational interaction only. In this regard, there are some aspects to take into consideration:
 - 1. Possible evidence of new physics "beyond" Einstein, such as apparent, or "effective" violations of Lorentz invariance might result from certain models of quantum gravity
 - 2. Metric theories of gravity (different from GR) may be responsible of violations of the LLI
 - These are theories that are not compatible with SEP
 - Due to the boundary values of the auxiliary fields that can act back on local gravitational dynamics
Lorentz Symmetry Violations

- We restrict the considerations to the gravitational interaction only. In this regard, there are some aspects to take into consideration:
 - 1. Possible evidence of new physics "beyond" Einstein, such as apparent, or "effective" violations of Lorentz invariance might result from certain models of quantum gravity
 - 2. Metric theories of gravity (different from GR) may be responsible of violations of the LLI
 - These are theories that are not compatible with SEP
 - Due to the boundary values of the auxiliary fields that can act back on local gravitational dynamics

In these cases (especially if vectors or tensors fields are present), we could have both violations of:

- LPI (i.e. preferred location effects: G = G(r) and/or G = G(t)), see Brans-Dicke theory and its generalizations
- LLI (i.e. preferred frame effects)

a scalar field is invariant under these transformations, so Brans-Dicke satisfies LLI

Lorentz Symmetry Violations

- We restrict the considerations to the gravitational interaction only. In this regard, there are some aspects to take into consideration:
 - 1. Possible evidence of new physics "beyond" Einstein, such as apparent, or "effective" violations of Lorentz invariance might result from certain models of quantum gravity
 - 2. Metric theories of gravity (different from GR) may be responsible of violations of the LLI
 - These are theories that are not compatible with SEP
 - Due to the boundary values of the auxiliary fields that can act back on local gravitational dynamics
 - 3. Non-Metric theories of gravity may be responsible of violations of the LLI
 - These are theories that are not compatible with SEP
 - These theories are characterized by a coupling of the additional dynamical fields with matter

Lorentz Symmetry Violations

- We restrict the considerations to the gravitational interaction only. In this regard, there are some aspects to take into consideration:
 - 1. Possible evidence of new physics "beyond" Einstein, such as apparent, or "effective" violations of Lorentz invariance might result from certain models of quantum gravity
 - 2. Metric theories of gravity (different from GR) may be responsible of violations of the LLI
 - These are theories that are not compatible with SEP
 - Due to the boundary values of the auxiliary fields that can act back on local gravitational dynamics
 - 3. Non-Metric theories of gravity may be responsible of violations of the LLI
 - These are theories that are not compatible with SEP
 - These theories are characterized by a coupling of the additional dynamical fields with matter
 - 4. Superstring theory
 - The additional fields, such as dilatons and moduli, can couple directly to stress-energy in a way that can result in violations (see Damour et al., 2002: PRL 89, PRD 66)

5th Force

- In the mid-1980s the following work aroused much interest in the scientific community:
- Fischbach, E., D. Sudarsky, A. Szafer, C. Talmadge and S.H. Aronson. Reanalysis of the Eötvös Experiment. *Physical Review Letters* 56: 3-6, 1986

PHYSICAL REVIEW

LETTERS

VOLUME 56

6 JANUARY 1986

NUMBER 1

Reanalysis of the Eötvös Experiment

Ephraim Fischbach^(a)

Institute for Nuclear Theory, Department of Physics, University of Washington, Seattle, Washington 98195

Daniel Sudarsky, Aaron Szafer, and Carrick Talmadge Physics Department, Purdue University, West Lafayette, Indiana 47907

and

S. H. Aronson

Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (Received 7 November 1985)

We have carefully reexamined the results of the experiment of Eötvös, Pekár, and Fekete, which compared the accelerations of various materials to the Earth. We find that the Eötvös-Pekár-Fekete data are sensitive to the composition of the materials used, and that their results support the existence of an intermediate-range coupling to baryon number or hypercharge.

PACS numbers: 04.90.+e

5th Force

- In the mid-1980s the following work aroused much interest in the scientific community:
- Fischbach, E., D. Sudarsky, A. Szafer, C. Talmadge and S.H. Aronson. Reanalysis of the Eötvös Experiment. *Physical Review Letters* 56: 3-6, 1986
- Eötvös, R.V., D. Pekár and E. Fekete. Beiträge zum Gesetze der Proportionalität von Trägheit und Gravität. *Annalen der Physik* (Leipzig) 68: 11-66, 1922
- WEP test: whether the behaviour of objects in a gravitational field was the same regardless of their different chemical composition:

$$\eta = \frac{\Delta a}{a} \cong 10^{-9}$$

5th Force

 Front page from: Eötvös, Pekár, Fekete (EPF): Annalen der Physik (Leipzig) 68: 11-66, 1922

Beiträge sum Gesetze der Proportionalität von Trägheit und Gravität; von Boland v. Eötvös †, Desiderius Pekár und Eugen Fekete.

11

Diese Abhandlung ist jene Bewerbungsschrift, welcher der erste Preis aus der Benckeschen Stiftung für das Jahr 1909 von der philosophischen Fakultät der Universität Göttingen zuerkannt wurde. Ihr Erscheinen war bis jetzt aus dem Grunde aufgeschoben, weil neue gleichartige Untersuchungen mit vervollkommneten Eötvösschen Drehwagen eine noch größere Genauigkeit versprochen haben. Neuerlich wurde aber die Eötvössche Drehwage in Ungarn zu praktischen Forschungen. zu Bergschürfungen verwendet, welche dann immer und immer, in größeren Rahmen ausgeführt, die Fortsetzung der oben erwähnten Untersuchungen verhindert haben. Mit Rücksicht aber auf das große Interesse, welches sich für die genauen experimentellen Resultate dieser Bewerbungsschrift - besonders wie für das Postulat der allgemeinen Relativitätstheorie von Einstein - kundtat, denken die Verfasser die Mitteilung dieses Aufsatzes der Öffentlichkeit nicht mehr vorenthalten zu wollen. Sie glauben damit auch der Absicht von Baron Roland v. Eötvös nachzukommen, der selbst schon die Veröffentlichung vorbereitete, an der Vollendung aber durch seinen am 8. April 1919 erfolgten Tod verhindert wurde. Das Original dieser Bewerbungsschrift hätte einen Umfang von beiläufig 10 Druckbogen, weshalb eine erhebliche Verkürzung der Abhandlung nötig war, ohne aber die Originalität der Arbeit verloren gehen zu lassen. So in erster Reihe wurden die Beobachtungen enthaltenden langen Tabellen und auch jene Teile ausgelassen, die das Wesen des Ganzen nicht beeinträchtigen.

1. Die Aufgabe, wie sie hier aufgefaßt und behandelt wurde.

Das Newtonsche Gesetz läßt sich folgenderweise aussprechen: Jeder kleinste Teil eines Körpers zicht jeden anderen solchen mit einer Kraft an, deren Richtung mit der Ver-

Torsion Balance

5th Force. Following Fischbach words:

- However, the result of our reanalysis of the EPF paper was that the EPF data were in fact "... sensitive to the composition of the materials used", in contrast to what EPF themselves had claimed.
- If the EPF data and our reanalysis of them were both correct, then one implication of our paper would be that EPF had discovered a new "fifth force" in nature

Eur. Phys. J. H **40**, 385–467 (2015) DOI: 10.1140/epjh/e2015-60044-5

THE EUROPEAN PHYSICAL JOURNAL H

Personal recollection

The fifth force: A personal history

Ephraim Fischbach^a

Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA

Received 12 September 2015 / Received in final form 14 September 2015 Published online 22 October 2015 © EDP Sciences, Springer-Verlag 2015

Abstract. On January 6, 1986, a paper written by our group appeared in Physical Review Letters entitled "Reanalysis of the Eötvös Experiment". In that Letter we reanalyzed a well-known 1922 paper by Eötvös, Pekár, and Fekete (EPF) which compared the accelerations of samples of different composition to the Earth. Our surprising conclusion was that "Although the Eötvös experiment has been universally interpreted as having given null results, we find in fact that this is not the case". Two days later a front page story appeared in the New York Times under the headline "Hints of 5th Force in Universe Challenge Galileo's Findings", and so was born the concept of a "fifth force". In this personal history I review the pre-history which motivated our paper, and discuss details of our reanalysis of the EPF paper that have not been presented previously. Our work led to illuminating correspondence with Robert Dicke and Richard Feynman which are presented here for the first time. I also discuss an interesting meeting with T.D. Lee, one of whose papers with C.N. Yang provided part of the theoretical motivation for our work. Although there is almost no support from the many experiments motivated by the EPF data for a fifth force with properties similar to those that we hypothesized in our original paper, interest in the EPF experiment continues for reasons I outline in the Epilogue.

- This generally refers to a gravity-like long-range force (its effects extend over macroscopic distances) co-existing with gravity, presumably arising from the exchange of any of the ultra-light quanta whose existence is predicted by various unification theories such as supersymmetry
- Depending on the specific characteristics of this hypothesized force, it could manifest itself in various experiments as an apparent deviation from the predictions of Newtonian gravity

5th Force: Experimental and Theoretical support

- Experimental:
 - R. Colella, A. W. Overhauser, and S. A. Werner, Observation of Gravitationally Induced Quantum Interference. *Phys. Rev. Lett.* 34, 1472, 1975
- Theoretical:
 - Fujii, Y., Dilaton and possible non-Newtonian gravity. Nature (Physical Science), 234: 5-7, 1971
 - Fujii, Y., Scale invariance and gravity of hadrons. Annals of Physics (New York) 69: 494-521, 1972
 - Fujii, Y., Scalar-tensor theory of gravitation and spontaneous breakdown of scale invariance. Physical Review D 9: 874-876, 1974
 - Fujii, Y., Spontaneously broken scale invariance and gravitation. General Relativity and Gravitation 6: 29-34, 1975
 - Fujii, Y., Composition independence of the possible finite-range gravitational force. General Relativity and Gravitation 13:1147-1155, 1981

5th Force: Experimental and Theoretical support

- Experimental:
 - R. Colella, A. W. Overhauser, and S. A. Werner, Observation of Gravitationally Induced Quantum Interference. *Phys. Rev. Lett.* 34, 1472, 1975

5th Force: Experimental and Theoretical support

• Theoretical:

NATURE PHYSICAL SCIENCE VOL. 234 NOVEMBER 1 1971

Dilaton and Possible Non-Newtonian Gravity

YASUNORI FUJII

Institute of Physics, College of General Education, University of Tokyo, Komaba, Tokyo 153

A model is proposed which allows a dilaton to show up in a possible non-Newtonian part of the gravitational force. By examining the available observational facts it can be shown that the force-range of the additional force, if it exists, will be either between 10 m and 1 km or smaller than ~1 cm.

A DILATON-a Nambu-Goldstone boson of dilatation invariance¹⁻⁶-will, if it exists, couple to the graviton, because the dilaton dominates the energy-momentum tensor which is supposed to be a source of the graviton. The fact that the dilaton is a scalar particle does not prevent it from coupling to the graviton, which is described by a symmetric tensor field. but is not a genuine spin-2 particle because of its masslessness. As a consequence the dilaton may affect the gravitational force between two masses.

If the dilaton mass is of the order of hadronic masses, any modifications will occur only within the distances of the order of fm. The dilaton mass could be, on the other hand, of the order of $\kappa \sim [G\alpha'^{-2}]^{1/2}$ which is a typical combination of two fundamental constants in the gravitational and strong interactions. (G is the Newtonian gravity constant, α' is the universal slope of Regge trajectories. I use the unit system with $c=\hbar=1$.) Possible non-Newtonian behaviour will then occur

We have an order of magnitude estimate of the constant $F_6^{7,9}$ $F_{\theta} \sim \alpha'^{-1}$

(1)

5

The θ -graviton mixing problem is then resolved to give a gravity potential

$$V(r) = -\frac{5}{4} G \frac{1}{r} \left[1 + \frac{1}{3} \left(\cos \kappa r - \frac{1 - t_{\theta}/2\kappa^2}{\sqrt{-D}} \sin \kappa r \right) e^{-\kappa \sqrt{-D}r} \right]$$
(2)

where $\kappa^2 = (3/8)GF_{\theta^2}$, and $-D = f_{\theta}/\kappa^2 - 1$ with the restriction $t_0 > \kappa^2$. From (1), with $G = 6.67 \times 10^{-8} \text{ cm}^3 \text{ g}^{-1} \text{ s}^{-2}$ from the Cavendish experiment, we obtain $\kappa \sim 10^{-20} m_{N'}$ or $\kappa^{-1} \sim 10^5$ cm = 1 km.

If the "bare" dilaton mass squared (t_0) vanishes, that is, dilatation invariance is strict, there is no change in the gravitational interaction. If t_{θ} is of the order of a hadronic mass squared, then $\kappa \sqrt{-D} \sim \sqrt{t_{\theta}}$ in the exponent in (2), because $t_{\theta} \gg \kappa^2$. The finite-range part vanishes for any macroscopic distance. On the other hand, t_{θ} may be of the same order of, but still larger than, κ^2 . We obtain $\kappa \sqrt{-D} \sim \kappa$, because $-D \sim 1$. The force-range is of the order of $\kappa^{-1} \sim km$. We have then an entirely new situation.

Consider the Cavendish experiment with the distance $r \sim 10$ cm. The potential (2) becomes

$$V(r) \sim -G \frac{1}{r}$$

5th Force: Experimental and Theoretical support

• Theoretical:

5th Force: Experimental and Theoretical support

• Theoretical:

VOLUME 89, NUMBER 8 PHYSICAL REVIEW LETTERS

19 AUGUST 2002

Runaway Dilaton and Equivalence Principle Violations

Thibault Damour Institut des Hautes Etudes Scientifiques, 35 route de Chartres, F-91440 Bures-sur-Yvette, France

Federico Piazza Dipartimento di Fisica, Universita di Milano Bicocca, Piazza delle Scienze 3, I-20126 Milan, Italy

Gabriele Veneziano Theory Division, CERN, CH-1211 Geneva 23, Switzerland, and Laboratoire de Physique Théorique, Université Paris-Sud, 91405 Orsay, France (Received 30 April 2002; published 5 August 2002)

In a recently proposed scenario, where the dilaton decouples while cosmologically attracted towards infinite bare string coupling, its residual interactions can be related to the amplitude of density fluctuations generated during inflation, and are large enough to be detectable through a modest improvement on present tests of free-fall universality. Provided it has significant couplings to either dark matter or dark energy, a runaway dilaton can also induce time variations of the natural "constants" within the reach of near-future experiments.

DOI: 10.1103/PhysRevLett.89.081601

PACS numbers: 11.25.Mj, 04.80.Cc, 98.80.Cq

PHYSICAL REVIEW D 66, 046007 (2002)

Violations of the equivalence principle in a dilaton-runaway scenario

T. Damour,¹ F. Piazza,² and G. Veneziano^{3,4} ¹Institut des Hautes Etudes Scientifiques, 91440 Bures-sur-Yvette, France ²Dipartimento di Fisica, Università di Milano Bicocca, Piazza delle Scienze 3, I-20126 Milan, Italy ³Theory Division, CERN, CH-1211 Geneva 23, Switzerland ⁴Laboratoire de Physique Théorique, Université Paris Sud, 91405 Orsay, France (Received 13 May 2002; published 28 August 2002)

We explore a version of the cosmological dilaton-fixing and decoupling mechanism in which the dilaton dependence of the low-energy effective action is extremized for infinitely large values of the bare string coupling $g_s^2 = e^{\phi}$. We study the efficiency with which the dilaton ϕ runs away toward its "fixed point" at infinity during a primordial inflationary stage, and thereby approximately decouples from matter. The residual dilaton couplings are found to be related to the amplitude of the density fluctuations generated during inflation. For the simplest inflationary potential $V(\chi) = \frac{1}{2} m_{\chi}^2(\phi) \chi^2$, the residual dilaton couplings are shown to predict violations of the universality of gravitational acceleration near the $\Delta a/a \sim 10^{-12}$ level. This suggests that a modest improvement in the precision of equivalence principle tests might be able to detect the effect of such a runaway dilaton. Under some assumptions about the coupling of the dilaton to dark matter and/or dark energy, the expected time variation of natural "constants" (in particular of the fine-structure constant) might also be large enough to be within reach of improved experimental or observational data.

DOI: 10.1103/PhysRevD.66.046007

PACS number(s): 11.25.-w, 04.80.Cc, 98.80.Cq

5th Force: How it would manifest?

- Yukawa-like potential parameterized by the strength α and a characteristic range λ :

$$V(r) = -G_{\infty} \frac{M_1 M_2}{r} \left(1 + \alpha e^{-r/\lambda}\right)$$

• It corresponds to a violation of the $1/r^2$ law for the gravitational interaction:

$$\vec{F}(r) = -\vec{\nabla}V(r) = -G_{\infty}\left[1 + \alpha\left(1 + \frac{r}{\lambda}\right)e^{-r/\lambda}\right]\frac{M_1M_2}{r^2}\hat{r}$$

- It may or may not envisage a violation of the EEP depending on the nature of the strength $\boldsymbol{\alpha}$

5th Force: How it would manifest?

- 1. the deviations from the usual 1/r law for the gravitational potential lead to new weak interactions between macroscopic objects
- 2. The interesting point is that these supplementary interactions may be either consistent with Einstein Equivalence Principle or not
- 3. In this second case, non-metric phenomena will be produced with tiny, but significant, consequences in the gravitational experiments
- 4. The characteristic of such very weak interactions, which are predicted by several theories, is to produce deviations for masses separations ranging through several orders of magnitude, starting from the sub-millimeter level up to the astronomical scale

Summarizing

- A Yukawa-like parameterization seems general
 - at the lowest order interaction and in the non-relativistic limit, independently of a:
 - Scalar field with the exchange of a spin-0 light boson
 - Vector field with the exchange of a spin-1 light boson
 - Tensor field with the exchange of a spin-2 light boson

- M_1 = Mass of the primary source;
- M_2 = Mass of the secondary source;
- G_{∞} = Newtonian gravitational constant;

c = Speed of light

= Distance;

- α = Strength of the interaction; K_1, K_2 = Coupling strengths;
- λ = Range of the interaction; μ = Mass of the light-boson;
- h = Planck constant;

scale distances between 10^{-4} m – 10^{15} m have been tested during the last 35 years with null results for a possible violation of NISL and for the WEP

What to measure and to test with laser-ranged satellites:

- **1.** The validity of the Equivalence Principle
- 2. The validity of the geometric structure and of the equation of motion of geodesics
- 3. The validity of Einstein's field equations

What to measure and to test with laser-ranged satellites:

1. The validity of the Equivalence Principle

- 1.1 Direct test
 - WEP from UFF
- 1.2 Indirect test
 - EEP, WEP and SEP from the effects on the orbit

What to measure and to test with laser-ranged satellites:

1. The validity of the Equivalence Principle

- 1.1 Direct test
 - WEP from UFF
- A.M. Nobili, G.L. Comandi, D. Bramanti, Suresh Doravari, D.M. Lucchesi, F. Maccarrone. Limitations to testing the equivalence principle with satellite laser ranging. *Gen. Relativity and Grav.*, DOI 10.1007/s10714-007-0560-x, 2007
- I. Ciufolini, R. Matzner, A. Paolozzi, E.C. Pavlis, G. Sindoni, J. Ries, V. Gurzadyan, R. Koenig. Satellite Laser-Ranging as a Probe of Fundamental Physics. *Scientific Reports Nature*, doi.org/10.1038/s41598-019-52183-9, 2019

$$\eta = \frac{\Delta a}{a} \cong \frac{\Delta (GM_{\oplus})}{GM_{\oplus}} \cong 2 \cdot 10^{-9}$$

What to measure and to test with laser-ranged satellites:

- 2. The validity of the geometric structure and of the equation of motion of geodesics
 - 2.1 Space curvature
 - De Sitter precession and Lense-Thirring precession
 - 2.2 Space curvature + non-linearity of the gravitational interaction
 - Schwarzschild precession (argument of pericenter)

$$\vec{\Omega}_{dS} \approx -\frac{3}{2} \vec{V}_E \wedge \left(\frac{GM_S}{c^2 R_{ES}^3}\right) \vec{X}_{ES} \qquad \langle \dot{\Omega}_{LT} \rangle_{sec} = \frac{2G}{c^2 a^3} \frac{J_{\oplus}}{(1-e^2)^{3/2}} \qquad \langle \dot{\omega}_{Schw} \rangle_{sec} = \frac{3}{c^2 a^{5/2}} \frac{GM_{\oplus}^{3/2}}{(1-e^2)} \Delta \dot{\Omega}_{dS} = \left| \vec{\Omega}_{dS} \right| \cos \varepsilon \qquad \langle \dot{\omega}_{LT} \rangle_{sec} = -\frac{6G}{c^2 a^3} \frac{J_{\oplus}}{(1-e^2)^{3/2}} \cos i \frac{3}{2} = \left(\frac{1}{2} + \gamma\right) \qquad \frac{1+\gamma}{2} \qquad \mu \qquad \frac{2+2\gamma-\beta}{3}$$

What to measure and to test with laser-ranged satellites:

3. The validity of Einstein's field equations

3.1 Indirect test

- Schwarzschild precession (argument of pericenter)
- de Sitter precession
- Lense-Thirring precession

IOP Publishing

Classical and Quantum Gravity

Class. Quantum Grav. 32 (2015) 155012 (50pp)

doi: 10. 1088/0264-9381/32/15/155012

Testing the gravitational interaction in the field of the Earth via satellite laser ranging and the Laser Ranged Satellites Experiment (LARASE)

D M Lucchesi^{1,2,3}, L Anselmo², M Bassan^{3,4}, C Pardini², R Peron^{1,3}, G Pucacco^{3,4} and M Visco^{1,3}

¹ Istituto di Astrofisica e Planetologia Spaziali (IAPS/INAF), Via del Fosso del Cavaliere 100, I-00133 Roma, Italy

² Istituto di Scienza e Tecnologie della Informazione (ISTI/CNR), Via G. Moruzzi 1, I-56124 Pisa, Italy

³ Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Roma, Italy

⁴Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Roma, Italy

E-mail: david.lucchesi@iaps.inaf.it

Received 24 March 2015, revised 1 June 2015 Accepted for publication 15 June 2015 Published 14 July 2015

- During the LARASE experiment in the period 2013–2019 various activities were developed in order to reach final measurements in the field of fundamental physics that were
 - not only precise,
 - but also accurate and robust in the evaluation of the systematic sources of error

- During the LARASE experiment in the period 2013–2019 various activities were developed in order to reach final measurements in the field of fundamental physics that were
 - not only precise,
 - but also accurate and robust in the evaluation of the systematic sources of error
- Prerequisite for the final gravitation measurements, is a precise orbit determination (**POD**) of the satellites involved in our analyses

- During the LARASE experiment in the period 2013–2019 various activities were developed in order to reach final measurements in the field of fundamental physics that were
 - not only precise,
 - but also accurate and robust in the evaluation of the systematic sources of error
- Prerequisite for the final gravitation measurements, is a precise orbit determination (POD) of the satellites involved in our analyses
- This is achieved by minimizing a cost function **Q** consisting of the square of the residuals of the observed distance of the satellite from an onground tracking station with the corresponding distance obtained from a dynamic model of the satellite's orbit

Table 2. Models currently used, within the LARASE research program, for the analysis of the orbit of the two LAGEOS and LARES satellites. The models are grouped in gravitational perturbations, non-gravitational perturbations and reference frames realizations.

Model For	Model Type	Reference
Geopotential (static)	EIGEN-GRACE02S/GGM05S	[84,90,91]
Geopotential (time-varying, tides)	Ray GOT99.2	[92]
Geopotential (time-varying, non tidal)	IERS Conventions 2010	[89]
Third–body	JPL DE-403	[93]
Relativistic corrections	Parameterized post-Newtonian	[88,94]
Direct solar radiation pressure	Cannonball	[46]
Earth albedo	Knocke-Rubincam	[63]
Earth-Yarkovsky	Rubincam	[56,64,65]
Neutral drag	JR-71/MSIS-86	[50,51]
Spin	LASSOS	[42]
Stations position	ITRF2008	[95]
Ocean loading	Schernek and GOT99.2 tides	[46,92]
Earth Rotation Parameters	IERS EOP C04	[96]
Nutation	IAU 2000	[97]
Precession	IAU 2000	[98]

Orbits:

- State vector (position and velocity, ...)
- $\begin{cases} \vec{x} \in \mathbb{R}^{\ell} \\ \vec{\alpha} \in \mathbb{R}^m \end{cases}$ Models dynamic parameters (C₂₀, Cr, ...)
- $\vec{x}(t_0 = \vec{x}_0 \in \mathbb{R}^\ell)$ Initial condition at a given epoch: $\ell = 6 + \dots$
- $\vec{x} = \vec{x}(t, \vec{x}_0, \vec{\alpha})$ General solution for the orbits (*integral flow*)

Observations:

$$C = C(\vec{x}, t, \vec{\beta})$$
 Observation function, $\vec{\beta} \in \mathbb{R}^n$ kinematic parameters

$$R_i = O_i - C_i = O_i - C\left(\vec{x}(t_i), t_i, \vec{\beta}\right) = \sum_j \frac{\partial C_i}{\partial P_j} \delta P_j + \delta O_i \qquad Q\left(\vec{R}\right) = \frac{1}{q} \vec{R}^T \vec{R} = \frac{1}{q} \sum_{i=1}^q R_i^2$$

<u>Orbits:</u>

 $\vec{x} = \vec{x}(t, \vec{x}_0, \vec{\alpha})$ General solution for the orbits (*integral flow*)

Observations:

С

$$= C(\vec{x}, t, \vec{\beta})$$
 Observation function, $\vec{\beta} \in \mathbb{R}^n$ kinematic parameters

$$R_i = O_i - C_i = O_i - C\left(\vec{x}(t_i), t_i, \vec{\beta}\right) = \sum_j \frac{\partial C_i}{\partial P_j} \delta P_j + \delta O_i \qquad Q\left(\vec{R}\right) = \frac{1}{q} \vec{R}^T \vec{R} = \frac{1}{q} \sum_{i=1}^q R_i^2$$

- Therefore, in order to achieve precise and accurate measurements for the gravitational interaction in the **WFSM** limit of **GR**, we developed more refined and reliable models to account for the main
 - non-gravitational and
 - gravitational perturbations
- These are part of our results in modeling efforts, and will be discussed in the presentation of this afternoon and of tomorrow morning (13th of November)
- Let us focus on the main results we have achieved in the measurements regarding the gravitational interaction

The main results of LARASE are:

- 1. The measurement of the **<u>GR total precession</u>** of **LAGEOS II** argument of pericenter
- The measurement of the <u>GR Lense-Thirring precession</u> of the combined right ascensions of the ascending node (RAAN) of the satellites LAGEOS, LAGEOS II and LARES

These precessions are related respectively with the Earth's:

1. Gravitoelectric field:

• produced by masses, and analogous to the electric field produced by charges

2. Gravitomagnetic field

• Produced by mass-currents, analogous to the magnetic field produced by electric currents

Linearised theory in the WFSM limit of GR

$$\eta_{\alpha\beta} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

$$G_{\alpha\beta} = 8\pi \frac{G}{c^4} T_{\alpha\beta}$$

$$\begin{bmatrix} \overline{h}^{\alpha\beta}_{\ ,\beta} = 0 \\ g_{\alpha\beta} = \eta_{\alpha\beta} + h_{\alpha\beta} \\ \Delta \overline{h}_{\alpha\beta} = 16\pi \frac{G}{c^4} T_{\alpha\beta} \end{bmatrix}$$

$$\frac{Gauge \ conditions}{Metric \ tensor}$$

$$\frac{h_{\alpha\beta} \ represents \ the \ curvature \ of \ spacetime}{\left[\overline{h}_{\alpha\beta} = h_{\alpha\beta} - \frac{1}{2} \eta_{\alpha\beta} h \\ h = h_{\alpha}^{\alpha} = \eta^{\alpha\beta} h_{\alpha\beta} \end{bmatrix}}$$

$$\Delta \overline{h}_{\alpha\beta} = 16\pi \frac{G}{c^4} T_{\alpha\beta}$$

$$\frac{Field \ equations}{Field \ equations}$$

$$\frac{h_{\alpha\beta} = h_{\alpha\beta} - \frac{1}{2} \eta_{\alpha\beta} h}{h = h_{\alpha}^{\alpha} = \eta^{\alpha\beta} h_{\alpha\beta}}$$

$$\frac{Gauge \ conditions}{h_{\alpha\beta} = 16\pi \frac{G}{c^4} T_{\alpha\beta}}$$

$$\frac{Field \ equations}{Field \ equations}$$

$$\frac{Field \ equations}{h_{\alpha\beta} = 16\pi \frac{G}{c^4} T_{\alpha\beta}}$$

$$\frac{Field \ equations}{Field \ equations}$$

$$\frac{Field \ equati$$

 ρ = mass-charge density

j = mass-current density

- Näherung, *Phys. Z.* 19, 204, 1918
- I. Ciufolini and. J.A. Wheeler, Gravitation and Inertia. Princeton Univ. Press, 1995

Measurement of LAGEOS II argument of pericenter GR precession

PHYSICAL REVIEW D 89, 082002 (2014)

LAGEOS II pericenter general relativistic precession (1993–2005): Error budget and constraints in gravitational physics

David M. Lucchesi*

Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica, (IAPS/INAF), Via del Fosso del Cavaliere 100, 00133 Roma, Italy, Istituto di Scienza e Tecnologie dell'Informazione, Consiglio Nazionale delle Ricerche, (ISTI/CNR), Via G. Moruzzi 1, 56124 Pisa, Italy, and Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy

Roberto Peron

Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica, (IAPS/INAF), Via del Fosso del Cavaliere 100, 00133 Roma, Italy and Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy (Received 16 April 2013; published 7 April 2014)

The aim of this paper is to extend, clarify, and deepen the results of our previous work [D. M. Lucchesi and R. Peron, Phys. Rev. Lett. 105, 231103 (2010)], related to the precise measurement of LAGEOS (LAser GEOdynamics Satellite) II pericenter shift. A 13-year time span of LAGEOS satellites' laser tracking data has been considered, obtaining a very precise orbit and correspondingly residuals time series from which to extract the relevant signals. A thorough description is provided of the data analysis strategy and the dynamical models employed, along with a detailed discussion of the known sources of error in the experiment, both statistical and systematic. From this analysis, a confirmation of the predictions of Einstein's general relativity, as well as strong bounds on alternative theories of gravitation, clearly emerge. In particular, taking conservatively into account the stricter error bound due to systematic effects, general relativity has been confirmed in the Earth's field at the 98% level (meaning the measurement of a suitable combination of β and γ PPN parameters in weak-field conditions). This bound has been used to constrain possible deviations from the inverse-square law parameterized by a Yukawa-like new long range interaction with strength $|\alpha| \lesssim 1 \times 10^{-10}$ at a characteristic range $\lambda \simeq 1$ Earth radius, a possible nonsymmetric gravitation theory with the interaction parameter $C_{\text{PLAGEOS II}} \lesssim (9 \times 10^{-2} \text{ km})^4$, and a possible spacetime torsion with a characteristic parameter combination $|2t_2 + t_3| \lesssim 7 \times 10^{-2}$. Conversely, if we consider the results obtained from our best fit of the LAGEOS II orbit, the constraints in fundamental physics improve by at least 2 orders of magnitude.

DOI: 10.1103/PhysRevD.89.082002

PACS numbers: 04.80.Cc, 91.10.Sp, 95.10.Eg, 95.40.+s

1. Measurement of **LAGEOS II** argument of pericenter **GR** precession

This represents the extension and completion of a previous work published on *Phys. Rev. Lett.* in 2010

Selected for a Viewpoint in *Physics* week ending PHYSICAL REVIEW LETTERS PRL 105, 231103 (2010) 3 DECEMBER 2010 Ś Accurate Measurement in the Field of the Earth of the General-Relativistic Precession of the LAGEOS II Pericenter and New Constraints on Non-Newtonian Gravity David M. Lucchesi^{1,2} and Roberto Peron¹ ¹Istituto di Fisica dello Spazio Interplanetario, Istituto Nazionale di Astrofisica, IFSI/INAF, Via del Fosso del Cavaliere 100, 00133 Roma, Italy ²Istituto di Scienza e Tecnologie dell'Informazione, Consiglio Nazionale delle Ricerche, ISTI/CNR, Via G. Moruzzi 1, 56124 Pisa, Italy Physics (Received 18 July 2010; published 29 November 2010) The pericenter shift of a binary system represents a suitable observable to test for possible deviations from the Newtonian inverse-square law in favor of new weak interactions between macroscopic objects. We analyzed 13 years of tracking data of the LAGEOS satellites with GEODYN II software but with no models for general relativity. From the fit of LAGEOS II pericenter residuals we have been able to obtain a 99.8% agreement with the predictions of Einstein's theory. This result may be considered as a 99.8% measurement in the field of the Earth of the combination of the γ and β parameters of general relativity, and it may be used to constrain possible deviations from the inverse-square law in favor of new weak interactions parametrized by a Yukawa-like potential with strength α and range λ . We obtained $|\alpha| \leq 1$ 1×10^{-11} , a huge improvement at a range of about 1 Earth radius. USA DOI: 10.1103/PhysRevLett.105.231103 PACS numbers: 04.80.Cc, 91.10.Sp, 95.10.Eg, 95.40.+s

Viewpoint

Via satellite

David Rubincam

Planetary Geodynamics Laboratory NASA Goddard Space Flight Center, Greenbelt, MD 20771, Published November 29, 2010

> More than a decade's worth of data collected from the LAGEOS II satellite is offering a new way to test general relativity.

Subject Areas: Gravitation

A Viewpoint on:

Accurate Measurement in the Field of the Earth of the General-Relativistic Precession of the LAGEOS II Pericenter and New Constraints on Non-Newtonian Gravity David M. Lucchesi and Roberto Peron Phys. Rev. Lett. 105, 231103 (2010) - Published November 29, 2010

Physics **3**, 100 (2010)

The expected GR precession vs. classical precession:

$$\langle \dot{\omega}_{Schw} \rangle_{sec} = \frac{3}{c^2 a^{5/2}} \frac{G M_{\oplus}^{3/2}}{(1-e^2)}$$
$$\langle \dot{\omega}_{LT} \rangle_{sec} = -\frac{6G}{c^2 a^3} \frac{J_{\oplus}}{(1-e^2)^{3/2}} \cos i$$

PHYSICAL REVIEW D 89, 082002 (2014)

TABLE I. Rate (mas/yr) and orbital shift (over 14 days) of the different types of secular relativistic precession on the arguments of pericenter of LAGEOS II and LAGEOS, and their sum (1 mas/yr = 1 milli-arc second per year).

	Precession	Rate (mas/yr)	Shift (m)
	$\Delta \dot{\omega}^{ m Schw}$	3351.95	7.61
LAGEOS II	$\Delta \dot{\omega}^{\mathrm{LT}}$	-57.00	-1.29×10^{-1}
	Total	3294.95	7.48
	$\Delta \dot{\omega}^{ m Schw}$	3278.77	7.44
LAGEOS	$\Delta \dot{\omega}^{LT}$	32.00	0.72×10^{-1}
	Total	3310.77	7.51

$$U = -\frac{GM_{\oplus}}{r} \sum_{\ell=0}^{\infty} \sum_{m=0}^{\ell} \left(\frac{R_{\oplus}}{r}\right)^{\ell} P_{\ell m}(\sin\varphi) \left(C_{\ell m} \cos m\lambda + S_{\ell m} \sin m\lambda\right),$$

$$\langle \dot{\omega}_{class} \rangle_{sec} = \frac{3}{2}n \left(\frac{R_{\oplus}}{a}\right)^2 \frac{1}{(1-e^2)^2} \left\{ \cos i + \left(1 - \frac{3}{2}sin^2i\right) \right\} \left[-\sqrt{5}\bar{C}_{20}\right] + \cdots$$

$$\langle \dot{\omega}_{class} \rangle_{sec} = \begin{cases} -2.8 \times 10^8 \ mas/yr & LAGEOS \\ 5.7 \times 10^8 \ mas/yr & LAGEOS \ II \end{cases}$$

Post data reduction analysis: 13-yr analysis of the LAGEOS II orbit (FIT)

Fit to the pericenter residuals:

$$\Delta \omega^{FIT} = a + b \cdot t + c \left(t - t_0\right)^2 + \sum_{i=1}^n D_i \sin\left(\frac{2 \cdot \pi}{P_i} \cdot t + \Phi_i\right)$$

We obtained b \cong 3294.6 mas/yr, very close to the prediction of **GR**

The discrepancy is just 0.01%

From a sensitivity analysis, with constraints on some of the parameters that enter into the least squares fit, we obtained an upper bound of **0.2%**

$$\Delta \dot{\omega} = \Delta \dot{\omega}_{_{GP}} + \Delta \dot{\omega}_{_{NGP}} + \mathcal{E} \cdot \Delta \dot{\omega}_{_{GR}}$$

$$\varepsilon = 1 - (0.12 \pm 2.10) \cdot 10^{-3} \pm 2.5 \cdot 10^{-2}$$

The overall error budget

DAVID M. LUCCHESI AND ROBERTO PERON

PHYSICAL REVIEW D 89, 082002 (2014)

TABLE XVII. Error budget of the LAGEOS II pericenter general relativity shift. Top: summary of the errors from the data reduction and the *a posteriori* best fit (see Sections VI and VII). Middle: summary of the systematic errors from the gravitational perturbations (see Section VIII). Bottom: summary of the systematic errors from the nongravitational perturbations (see Section IX).

	Statistical errors	
Residuals	Mean	Standard deviation
Range	9.67 cm	3.88 cm
Pericenter	4.57 mas	1.87 mas
Adjusted \mathcal{R}^2_a	0.998	
Reduced χ^2_{ν} test	0.14	
	$\epsilon_{\omega}^{\rm sta} - 1 = (-0.12 \pm 2.10) \times 10^{-3}$	
Systematic errors: gravitational perturb	ations	
Error source	Error value (% $\Delta \dot{\omega}_{II}^{rel}$)	Total not correlated (% $\Delta \dot{\omega}_{II}^{rel}$
Even zonal harmonics	2.45	
Odd zonal harmonics	$4.10 imes10^{-2}$	
Tides (solid $+$ ocean)	$2.48 imes 10^{-2}$	2.46
Secular trends (ℓ = even)	$3.30 imes 10^{-2}$	
Seasonal-like effects	0.24	
Systematic errors: nongravitational per	turbations	
Error source	Error value (% $\Delta \dot{\omega}_{II}^{rel}$)	Total not correlated (% $\Delta \dot{\omega}_{II}^{rel}$
Direct solar radiation	0.50	
Earth's albedo	0.39	
Thermal thrusts	0.09	0.64
Drag (neutral + charged)	negligible	
Total not correlated		2.54
	$\epsilon^{ m sys}_{\omega}-1=\pm 2.54 imes 10^{-2}$	

The overall error budget

DAVID M. LUCCHESI AND ROBERTO PERON

PHYSICAL REVIEW D 89, 082002 (2014)

TABLE XVII. Error budget of the LAGEOS II pericenter general relativity shift. Top: summary of the errors from the data reduction and the *a posteriori* best fit (see Sections VI and VII). Middle: summary of the systematic errors from the gravitational perturbations (see Section VIII). Bottom: summary of the systematic errors from the nongravitational perturbations (see Section IX).

	Statistical errors	
Residuals	Mean	Standard deviation
Range	9.67 cm	3.88 cm
Pericenter	4.57 mas	1.87 mas
Adjusted \mathcal{R}^2_a	0.998	
Reduced χ^2_{ν} test	0.14	
	$\epsilon_{\omega}^{\text{sta}} - 1 = (-0.12 \pm 2.10) \times 10^{-3}$	
Systematic errors: gravitational perturb	pations	
Error source	Error value (% $\Delta \dot{\omega}_{II}^{rel}$)	Total not correlated (% $\Delta \dot{\omega}_{II}^{rel}$
Even zonal harmonics	2.45	
Odd zonal harmonics	4.10×10^{-2}	-
Tides (solid $+$ ocean)	2.48×10^{-2}	2.46
Secular trends (ℓ = even)	3.30×10^{-2}	
Seasonal-like effects	0.24	
Systematic errors: nongravitational per	turbations	
Error source	Error value (% $\Delta \dot{\omega}_{II}^{rel}$)	Total not correlated (% $\Delta \dot{\omega}_{II}^{rel}$
Direct solar radiation	0.50	
Earth's albedo	0.39	
Thermal thrusts	0.09	0.64
Drag (neutral + charged)	negligible	
Total not correlated		2.54
	$\epsilon^{ m sys}_{\omega}-1=\pm 2.54 imes 10^{-2}$	

Summary of the constraints obtained

TABLE XVIII. Summary of the results obtained in the present work; together with the measurement error budget, the constraints on fundamental physics are listed and compared with the literature.

Parameter	Values and uncertainties (this study)	Uncertainties (literature)	Remarks
$\epsilon_{\omega} - 1$	$-1.2 \times 10^{-4} \pm 2.10 \times 10^{-3} \pm 2.54 \times 10^{-2}$		Error budget of the perigee precession measurement in the field of the Earth
$\frac{ 2+2\gamma-\beta }{3}-1$	$-1.2 \times 10^{-4} \pm 2.10 \times 10^{-3} \pm 2.54 \times 10^{-2}$	$\pm (1.0 \times 10^{-3}) \pm (2 \times 10^{-2})^{a}$	Constraint on the combination of PPN parameters
$ \alpha $	$\lesssim \lvert 0.5 \pm 8.0 \pm 101 \rvert \times 10^{-12}$	$\pm 1 imes 10^{-8b}$	Constraint on a possible (Yukawa-like) NLRI
$\mathcal{C}_{\oplus \text{LAGEOSII}}$	$\leq (0.003 \text{ km})^4 \pm (0.036 \text{ km})^4 \pm (0.092 \text{ km})^4$	$\pm (0.16 \text{ km})^{4^{\circ}}; \pm (0.087 \text{ km})^{4^{\circ}}$	Constraint on a possible NSGT
$ 2t_2 + t_3 $	$\lesssim 3.5 \times 10^{-4} \pm 6.2 \times 10^{-3} \pm 7.49 \times 10^{-2}$	$3 \times 10^{-3^{e}}$	Constraint on torsion
^a From the ^b From [1] ^c From [5] ^d From [7] ^e From [1]	e preliminary estimate of the systematic errors 67] with Lunar-LAGEOS <i>GM</i> measurements.] and based on a partial estimate for the systematic] and based on the analysis of the systematic	s of [166] for the perihelion prec ematic errors. errors only.	ession of Mercury.

Summary of the constraints obtained

fundamental	physics are listed and compared with the lite	erature.		
Parameter	Values and uncertainties (this study)	Uncertainties (literature)	Remarks	
$\epsilon_{\omega} - 1$	$-1.2\!\times\!10^{-4}\!\pm\!2.10\!\times\!10^{-3}\!\pm\!2.54\!\times\!10^{-2}$		Error budget of the perigee precession measurement in the field of the Earth	
$\frac{ 2+2\gamma-\beta }{3}-1$	$-1.2\!\times\!10^{-4}\!\pm\!2.10\!\times\!10^{-3}\!\pm\!2.54\!\times\!10^{-2}$	$\pm(1.0\times10^{-3})\pm(2\times10^{-2})^a$	Constraint on the combination	
$ \alpha $	${\lesssim} 0.5\pm8.0\pm101 \times10^{-12}$	$\pm 1 \times 10^{-8b}$	Constraint on a possible (Yukawa-like) NLRI	
$\mathcal{C}_{\oplus \text{LAGEOSII}}$	$\leq (0.003 \mathrm{km})^4 \pm (0.036 \mathrm{km})^4 \pm (0.092 \mathrm{km})^4$	$\pm (0.16 \text{ km})^{4^{\circ}}; \pm (0.087 \text{ km})^{4^{\circ}}$	Constraint on a possible NSGT	
$ 2t_2 + t_3 $	$\lesssim 3.5 \times 10^{-4} \pm 6.2 \times 10^{-3} \pm 7.49 \times 10^{-2}$	$3 \times 10^{-3^{e}}$	Constraint on torsion	
^a From the ^b From [1] ^c From [5] ^d From [7] ^e From [1]	e preliminary estimate of the systematic errors 67] with Lunar-LAGEOS <i>GM</i> measurements. and based on a partial estimate for the syste and based on the analysis of the systematic 68] with no estimate for the systematic errors	s of [166] for the perihelion prec ematic errors. errors only.	ession of Mercury.	

TABLE XVIII. Summary of the results obtained in the present work; together with the measurement error budget, the constraints on

[166] I.I. Shapiro, in General Relativity and Gravitation, 1989, edited by N. Ashby, D. F. Bartlett, and W. Wyss (Cambridge University Press, Cambridge, 1990), p. 313.

Combination of PPN Parameters

$$\langle\dot{\omega}_{Schw}\rangle_{sec} = \left(\frac{2+2\gamma-\beta}{3}\right)\frac{3}{c^2a^{5/2}}\frac{GM_{\oplus}^{3/2}}{(1-e^2)}$$

$$\frac{|2+2\gamma-\beta|}{3} - 1 = -1.2 \cdot 10^{-4} \pm 2.10 \cdot 10^{-3} \pm 2.5 \cdot 10^{-2}$$

This result can be compared with the measurement by Shapiro and collaborators of Mercury's perihelion advance, determined by the radar ranging technique based on the measurement of the echo delay between the Earth and Mercury in the period between 1966 and 1990

Summary of the constraints obtained

Paramete	Values and uncertainties (this study)	Uncertainties (literature)	Remarks
$\epsilon_{\omega} - 1$	$-1.2\!\times\!10^{-4}\!\pm\!2.10\!\times\!10^{-3}\!\pm\!2.54\!\times\!10^{-2}$		Error budget of the perigee precession measurement in the field of the Earth
$\frac{ 2+2\gamma-\beta }{3}$	1 $-1.2 \times 10^{-4} \pm 2.10 \times 10^{-3} \pm 2.54 \times 10^{-2}$	$\pm (1.0 \times 10^{-3}) \pm (2 \times 10^{-2})^{a}$	Constraint on the combination of PPN parameters
$ \alpha $	$\lesssim \! 0.5 \pm 8.0 \pm 101 \times 10^{-12}$	$\pm 1 \times 10^{-8b}$	Constraint on a possible (Yukawa-like) NLRI
$\mathcal{C}_{\oplus \text{LAGEOS}}$	$_{\rm II} \leq (0.003 \rm km)^4 \pm (0.036 \rm km)^4 \pm (0.092 \rm km)^4$	$\pm (0.16 \text{ km})^{4c}; \pm (0.087 \text{ km})^{4d}$	Constraint on a possible NSGT
$ 2t_2 + t_3 $	$\lesssim 3.5 \times 10^{-4} \pm 6.2 \times 10^{-3} \pm 7.49 \times 10^{-2}$	$3 \times 10^{-3^{e}}$	Constraint on torsion
^a From ^b From ^c From ^d From ^e From	the preliminary estimate of the systematic error $[167]$ with Lunar-LAGEOS <i>GM</i> measurements. $[5]$ and based on a partial estimate for the systematic $[7]$ and based on the analysis of the systematic $[168]$ with no estimate for the systematic errors	s of [166] for the perihelion prec ematic errors. errors only.	ession of Mercury.

Violation of 1/r² law: Yukawa-like potential

• Fujii; Fischbach; Damour

$$V(r) = -G_{\infty} \frac{M_1 M_2}{r} \left(1 + \alpha e^{-r/\lambda}\right)$$

$$\vec{F}(r) = -\vec{\nabla}V(r) = -G_{\infty}\left[1 + \alpha\left(1 + \frac{r}{\lambda}\right)e^{-r/\lambda}\right]\frac{M_1M_2}{r^2}\hat{r}$$
$$\alpha = \frac{1}{G_{\infty}}\left(\frac{K_1}{M_1} \cdot \frac{K_2}{M_2}\right) \qquad \lambda = \frac{h}{\mu c}$$

As we have described, this type of parameterization, at the lowest interaction order and in the non-relativistic limit, is compatible with many metric theories of gravitation and with modern theories of physics regardless of the additional fields they consider: Scalar, Tensor and Vector fields

D.M. Lucchesi, *Phys. Lett. A* 318, 234, 2003; D.M. Lucchesi, Adv. *Space Res.* 47, 1232 (2011)

Results of the LARASE experiment

Violation of 1/r² law: Yukawa-like potential

$$\Re = -\frac{G_{\infty}M_{\oplus}}{a^2} \left(\frac{a}{r}\right)^2 \alpha \left(1 + \frac{r}{\lambda}\right) e^{-\frac{r}{\lambda}}$$

In order to retain the long period and secular effects we need to average Gauss equations over one cycle of a fast variable, like *M* or *f* :

GAUSS equations

 $e\frac{2}{n\sqrt{1-e^2}}\Re\sin f$ $r = \frac{a(1-e^2)}{1+e\cos f}$ $\sin f = 2\sqrt{1-e^2}\sum_{k=1}^{\infty}\frac{1}{k}J_k(ke)\sin kM$ $\cos u = \frac{e + \cos f}{1 + e \cos f}$ $\dot{a} =$ $\sin u = \sqrt{1 - e^2} \frac{\sin f}{1 + e \cos f}$ $\dot{e} =$ $dM = \left(\frac{r}{a}\right)^2 \frac{df}{\sqrt{1-a^2}}$ $\dot{I} =$ $\dot{\Omega} =$ $-\frac{\sqrt{1-e^2}}{nae}\Re\cos f$ = 0 $\langle \dot{a} \rangle_{2\pi}$ $\dot{\omega} =$ $\begin{array}{l} \langle \dot{e} \rangle_{2\pi} &= 0 \\ \langle \dot{\omega} \rangle_{2\pi} &\neq 0 \\ \langle \dot{M} \rangle_{2\pi} &\neq 0 \end{array}$ We have secular effects only on $\dot{M} = n + \frac{1}{na} \Re \left(\frac{\cos u}{e(1 - e^2)} - \sqrt{1 - e^2} \sin f \sin u + 2 \frac{(1 - e^2)}{(1 + e \cos f)} \right)$ the satellite perigee ω and mean anomaly **M** n = Satellite mean motion of the $n^2 a^3 = G_{\infty} (M_{\oplus} + m_s) \cong G_{\infty} M_{\oplus}$ unperturbed two-body problem

Violation of 1/r² law: Yukawa-like potential

$$\vec{\mathcal{R}}_{Yuk} = -\alpha \frac{G_{\infty}M_{\oplus}}{r^2} \left(1 + \frac{r}{\lambda}\right) e^{-r/\lambda} \hat{r}$$
$$\alpha \cong \left| (\mathbf{0}.\mathbf{5} \pm \mathbf{8}) \cdot \mathbf{10}^{-12} \pm \mathbf{101} \cdot \mathbf{10}^{-12} \right|$$

C

Violation of 1/r^2 law: Yukawa-like potential

Reference: Coy, Fischbach, Hellings, Standish, & Talmadge (2003)

Results of the LARASE experiment

Constraints on a long-range force: Yukawa like interaction $|\alpha| \cong |(0.5 \pm 8) \cdot 10^{-12} \pm 101 \cdot 10^{-12}|$

Previous

limits with

LAGEOS's:

 $<10^{-5} \div 10^{-8}$

Reference: Coy, Fischbach, Hellings, Standish, & Talmadge (2003)

Results of the LARASE experiment

Constraints on a long-range force: Yukawa like interaction $|\alpha| \cong |(0.5 \pm 8) \cdot 10^{-12} \pm 101 \cdot 10^{-12}|$

Reference: Coy, Fischbach, Hellings, Standish, & Talmadge (2003)

Results of the LARASE experiment

Constraints on a long-range force: Yukawa like interaction $|\alpha| \cong |(0.5 \pm 8) \cdot 10^{-12} \pm 101 \cdot 10^{-12}|$

Further possible Constraints of a long-range force

- 1. On the mass of the graviton
- 2. On the spatial variation of G

$$\mu = \frac{h}{\lambda c} \qquad \lambda \cong 6,081 km \qquad \mu = 2 \cdot 10^{-13} \ eV/c^2$$

Further possible Constraints of a long-range force

- 1. On the mass of the graviton
- 2. On the spatial variation of G

 $\mu = \frac{h}{\lambda c} \qquad \lambda \cong 6,081 km \qquad \mu = 2 \cdot 10^{-13} \ eV/c^2$

$$\vec{F}(r) = -\vec{\nabla}V(r) = -G_{\infty}\left[1 + \alpha\left(1 + \frac{r}{\lambda}\right)e^{-r/\lambda}\right]\frac{M_1M_2}{r^2}\hat{r}$$

However, in Celestial mechanics we deal with *GM* and not with *G*

Summary of the constraints obtained

TABLE XVIII. Summary of the results obtained in the present work; together with the measurement error budget, the constraints on fundamental physics are listed and compared with the literature.

Parameter	Values and uncertainties (this study)	Uncertainties (literature)	Remarks
$\epsilon_{\omega} - 1$	$-1.2\!\times\!10^{-4}\!\pm\!2.10\!\times\!10^{-3}\pm\!2.54\!\times\!10^{-2}$		Error budget of the perigee precession measurement in the field of the Farth
$\frac{ 2+2\gamma-\beta }{3}-1$	$-1.2\!\times\!10^{-4}\!\pm\!2.10\!\times\!10^{-3}\pm\!2.54\!\times\!10^{-2}$	$\pm (1.0\times 10^{-3}) \pm (2\times 10^{-2})^a$	Constraint on the combination of PPN parameters
$ \alpha $	${\lesssim} 0.5\pm8.0\pm101 \times10^{-12}$	$\pm 1 \times 10^{-8b}$	Constraint on a possible (Yukawa-like)
$\mathcal{C}_{\oplus \text{LAGEOSII}}$	$\leq (0.003 \text{ km})^4 \pm (0.036 \text{ km})^4 \pm (0.092 \text{ km})^4$	$\pm (0.16 \text{ km})^{4^{\circ}}; \pm (0.087 \text{ km})^{4^{\circ}}$	Constraint on a possible NSGT
$ 2i_2 + i_3 $	$\lesssim 3.5 \times 10^{-4} \pm 6.2 \times 10^{-3} \pm 7.49 \times 10^{-2}$	3 × 10 3P	Constraint on torsion
^a From the ^b From [10 ^c From [5] ^d From [7] ^e From [10	e preliminary estimate of the systematic errors 67] with Lunar-LAGEOS <i>GM</i> measurements. and based on a partial estimate for the systematic and based on the analysis of the systematic feal with no estimate for the systematic errors	s of [166] for the perihelion prec matic errors. errors only.	ession of Mercury.

Moffat Non-Symmetric Theory of Gravitation

- J.W. Moffat, Phys. Rev. D 19, 3554, 1979
- J.W. Moffat and E. Woolgar, *Phys. Rev. D* 37, 918, 1988

$$\Delta \dot{\omega}^{\rm Mof} = \frac{3(GM_{\oplus})^{3/2}}{c^2 a^{5/2} (1-e^2)} \bigg[\mathcal{C}_{\mathcal{BS}} \frac{c^4 (1+e^2/4)}{(GM_{\oplus}a(1-e^2))^2} \bigg],$$

$$\mathcal{C}_{\oplus Lag2} = \left(M_{\oplus} - m_{Lag2}\right) \left(\frac{\ell_{\oplus}^2}{M_{\oplus}} - \frac{\ell_{Lag2}^2}{m_{Lag2}}\right) \left(\ell_{\oplus}^2 - \ell_{Lag2}^2\right)$$

 $C_{\bigoplus LAGEOS II} \lesssim (0.003 \text{ km})^4 \pm (0.036 \text{ km})^4 \pm (0.092 \text{ km})^4.$

Among the various features of this theory, we are interested in the one which specifies that a given body *B* has an associated NSGT charge ℓ_B^2 (in addition to its mass) which arises from the coupling of the nonmetric with a vector current

[5] I. Ciufolini and R. Matzner, Int. J. Mod. Phys. A 07, 843, 1992; [7] D.M. Lucchesi, Phys. Lett. A 318, 234, 2003

LASERRANGEDSATELLITESEXPERIMENT

Summary of the constraints obtained

fundamental	physics are listed and compared with the lite	erature.					
Parameter	Values and uncertainties (this study)	Uncertainties (literature)	Remarks				
$\epsilon_{\omega} - 1$	$-1.2\!\times\!10^{-4}\!\pm\!2.10\!\times\!10^{-3}\!\pm\!2.54\!\times\!10^{-2}$		Error budget of the perigee precession measurement in the field of the Earth				
$\frac{ 2+2\gamma-\beta }{3}-1$	$-1.2 \times 10^{-4} \pm 2.10 \times 10^{-3} \pm 2.54 \times 10^{-2}$	$\pm (1.0 \times 10^{-3}) \pm (2 \times 10^{-2})^a$	Constraint on the combination of PPN parameters				
$ \alpha $	$\lesssim \! 0.5\pm8.0\pm101 \times 10^{-12}$	$\pm 1 imes 10^{-8b}$	Constraint on a possible (Yukawa-like) NLRI				
COLACTOST	$\leq (0.003 \mathrm{km})^4 + (0.036 \mathrm{km})^4 + (0.092 \mathrm{km})^4$	$+(0.16 \text{ km})^{4c} + (0.087 \text{ km})^{4d}$	Constraint on a possible NSGT				
$ 2t_2 + t_3 $	$\lesssim 3.5 \times 10^{-4} \pm 6.2 \times 10^{-3} \pm 7.49 \times 10^{-2}$	$3 \times 10^{-3^{e}}$	Constraint on torsion				
^a From the preliminary estimate of the systematic errors of [166] for the perihelion precession of Mercury. ^b From [167] with Lunar-LAGEOS <i>GM</i> measurements. ^c From [5] and based on a partial estimate for the systematic errors. ^d From [7] and based on the analysis of the systematic errors only. ^e From [168] with no estimate for the systematic errors.							

TABLE XVIII. Summary of the results obtained in the present work; together with the measurement error budget, the constraints on

Torsion

- F.W. Hehl, P. von der Heyde, G.D. Kerlick, and J.M. Nester, *Rev. Mod. Phys.* 48, 393, 1976
- R.T. Hammond, *Rep. Prog. Phys.* 65, 599, 2002
- Y. Mao, M. Tegmark, A.H. Guth, and S. Cabi, *Phys. Rev. D* 76, 104029, 2007

$$\Delta \dot{\omega}_{\text{torsion}} = \epsilon_{\text{Schw}} \Delta \dot{\omega}^{\text{Schw}} \left(\frac{2t_2 + t_3}{3} \right) + \Delta \dot{\omega}_{\text{torsion}}^{\text{LT}},$$

 $|2t_2 + t_3| \lesssim 3.5 \times 10^{-4} \pm 6.2 \times 10^{-3} \pm 7.49 \times 10^{-2},$

A generalization of Einstein's GR may be obtained when a Riemann-Cartan spacetime is considered. In this case a nonvanishing torsional tensor is present because of nonsymmetric connection coefficients $\Gamma^{\gamma}_{\alpha\beta}$

[168] R. March, G. Bellettini, R. Tauraso, and S. Dell'Agnello, Phys. Rev. D 83, 104008, 2011

Part II

Measurement of the Lense-Thirring precession on the orbits of the two LAGEOS and LARES satellites

The measurement of the **Lense-Thirring** precession has been the primary goal of **LARASE**, and this was explicitly requested by Prof. R. Battiston, President of the **INFN-CSN2** on Astroparticle Physics in 2013

As already underlined, this was mainly pursued:

- by improving the reliability of the dynamic model used in the **POD**
- and following IERS Conventions 2010, IAU 2000 Resolutions, and ILRS Recommendations

The **Lense-Thirring** effect consists of a precession of the orbit of a satellite around a primary produced by its rotation, i.e. by its angular momentum (mass-currents)

This precession produces a secular effect in two orbital elements:

- the right ascension of the ascending node
- the argument of pericenter

$$\begin{pmatrix} \frac{d\Omega}{dt} \\ \frac{d\omega}{dt} \\ \frac{sec}{sec} \end{pmatrix}_{sec} = \frac{2G}{c^2 a^3} \frac{J_{\oplus}}{(1 - e^2)^{3/2}}$$
$$\begin{pmatrix} \frac{d\omega}{dt} \\ \frac{d\omega}{dt} \\ \frac{d\omega}{sec} \end{pmatrix}_{sec} = -\frac{6G}{c^2 a^3} \frac{J_{\oplus}}{(1 - e^2)^{3/2}} \cos \theta$$

$$\dot{\vec{\Omega}}_{GM} = -\frac{1}{2c}\vec{B}_{GM} = \frac{G}{c^2r^3}\left[3(\vec{S}\cdot\hat{r})\hat{r} - \vec{S}\right]$$

An accurate and reliable measurement of the gravitomagnetic field of the Earth is not only important *per se*, as a further and robust test of the **GR** predictions in the **WFSM** limit. There are at least three main issues that, for their importance, require a much more precise and accurate measurement of gravitomagnetism, even in weak-field conditions:

- Intrinsic gravitomagnetism
- Strong fields and compact objects
- Mach's Principle

de Sitter Lense–Thirring an $\dot{\Omega}_{rel.} = \frac{3}{2} \frac{M_{\oplus}}{r^2} (\hat{r} \times \vec{v}) + \frac{-J_{\oplus} + 3\hat{r}(\vec{J}_{\oplus} \bullet \hat{r})}{r^3}$ 6,614.4 mas/yr 40.9 mas/yr $\approx 2 \cdot 10^{-5}$ $\approx 3 \cdot 10^{-3}$ Comparable with the CASSINI measurement (2002) of γ ($\delta \gamma \cong$ 2.10^{-5} , Bertotti et al. 2003,

Letters to Nature).

Results of the LARASE experiment Gravity Probe B (GPB)

GPB, after 40 years of effort and \$ 700 million satellite project, was launched on April 19, 2004 from Vandenberg Air Force Base (CA/USA) with a Delta II rocket

PI Prof. Francis Everitt http://einstein.stanford.edu

The two primary goals of GPB were:

- 1. The measurement of the framedragging effect with accuracy of about **0.3%**;
- 2. The measurement of the de Sitter effect with an accuracy of about 0.002%;

For 18 months of nominal duration

• Schiff (1960)

1960

1915

LETTERS

Volume 4

MARCH 1, 1960

POSSIBLE NEW EXPERIMENTAL TEST OF GENERAL RELATIVITY THEORY^{*}

L. I. Schiff Institute of Theoretical Physics, Department of Physics, Stanford University, Stanford, California (Received February 11, 1960)

In a paper now in process of publication,¹ it is argued that only the planetary orbit precession provides real support for the full structure of the general theory of relativity. The other two of the three "crucial tests," the gravitational red shift and deflection of light, can be inferred correctly from the equivalence principle and the special theory of relativity, both of which are well established by other experimental evidence. It is also pointed out that a terrestrial or satellite experiment that would really test general relativity theory would have either to use particles of finite rest mass in such a way that the equation of motion can be confirmed beyond the Newtonian approximation, or to verify the secondorder deviations of the metric tensor from its Minkowski form.

vector measured by a co-moving observer, \tilde{S}^0 . obevs the equation

$$d\vec{\mathbf{S}}^{0}/dt = \vec{\boldsymbol{\Omega}} \times \vec{\mathbf{S}}^{0}, \tag{2}$$

(3)

NUMBER 5

where

$$\vec{\Omega} = (\vec{\mathbf{F}} \times \vec{\mathbf{v}})/2mc^2 + (3GM/2c^2r^3)(\vec{\mathbf{r}} \times \vec{\mathbf{v}}) + (GI/c^2r^3)[3(\vec{\omega} \cdot \vec{\mathbf{r}})\vec{\mathbf{r}}/r^2 - \vec{\omega}];$$

 $I = 2MR^2/5$ is the moment of inertia of the earth of radius R, assumed to be homogeneous, and $\vec{\omega}$ is its angular velocity vector. The first term on the right side of (3) is the Thomas precession,³ which is a special relativity effect. The other two are the lowest order effects of general relativity; the second term arises whether or not the earth is rotating, and the third term is

Selected for a Viewpoint in *Physics* week ending PHYSICAL REVIEW LETTERS PRL 106, 221101 (2011) 3 JUNE 2011 Ş **Gravity Probe B: Final Results of a Space Experiment to Test General Relativity** C. W. F. Everitt,^{1,*} D. B. DeBra,¹ B. W. Parkinson,¹ J. P. Turneaure,¹ J. W. Conklin,¹ M. I. Heifetz,¹ G. M. Keiser,¹ A.S. Silbergleit,¹ T. Holmes,¹ J. Kolodziejczak,² M. Al-Meshari,³ J.C. Mester,¹ B. Muhlfelder,¹ V.G. Solomonik,¹ K. Stahl,¹ P. W. Worden, Jr.,¹ W. Bencze,¹ S. Buchman,¹ B. Clarke,¹ A. Al-Jadaan,³ H. Al-Jibreen,³ J. Li,¹ J. A. Lipa,¹ J. M. Lockhart,¹ B. Al-Suwaidan,³ M. Taber,¹ and S. Wang¹ ¹HEPL, Stanford University, Stanford, California 94305-4085, USA ²George C. Marshall Space Flight Center, Huntsville, Alabama 35808, USA ³King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia (Received 1 April 2011; published 31 May 2011) Gravity Probe B, launched 20 April 2004, is a space experiment testing two fundamental predictions of Einstein's theory of general relativity (GR), the geodetic and frame-dragging effects, by means of cryogenic gyroscopes in Earth orbit. Data collection started 28 August 2004 and ended 14 August 2005. Analysis of the data from all four gyroscopes results in a geodetic drift rate of $-6601.8 \pm$ 18.3 mas/yr and a frame-dragging drift rate of -37.2 ± 7.2 mas/yr to be compared with the $\overline{\text{GR}}$ predictions of -6606.1 mas/yr and -39.2 mas/yr, respectively ("mas" is milliarcsecond; 1 mas = 4.848×10^{-9} rad).

... both measures are far from the initial objectives ...

DOI: 10.1103/PhysRevLett.106.221101

PACS numbers: 04.80.Cc

Results of the LARASE experiment $\begin{pmatrix} du \\ dt \end{pmatrix}_{sec} = \frac{2G}{c^2 a^3} \frac{J_{\oplus}}{(1-e^2)^{3/2}}$ $\begin{pmatrix} dw \\ dt \end{pmatrix} = -\frac{6G}{c^2 a^3} \frac{J_{\oplus}}{(1-e^2)^{3/2}} \cos i$

The **Lense-Thirring** precession is very small compared to classical orbit precessions due to deviations from the spherical symmetry for the Earth's mass distribution, or with the same relativistic **Schwarzschild** precession produced by the mass of the primary (≈ 3350 mas/yr for **LAGEOS**)

TABLE I. Mean orbital elements of LAGEOS, LAGEOS II and LARES.

Element	Unit	Simbol	LAGEOS	LAGEOS II	LARES
semi-major axis	[km]	a	$12\ 270.00$	$12\ 162.07$	7 820.31
eccentricity		e	0.004433	0.013798	0.001196
inclination	$\left[deg \right]$	i	109.84	52.66	69.49

TABLE II. Rate in milli-arc-sec per year (mas/yr) for the secular Lense-Thirring precession on the right ascension of the ascending node and on the argument of pericenter of LA-GEOS, LAGEOS II and LARES satellites.

Rate in the element	LAGEOS	LAGEOS II	LARES
$\dot{\Omega}_{L-T}$	30.67	31.50	118.48
$\dot{\omega}_{ ext{L-T}}$	31.23	-57.31	-334.68

$$Y(r,\varphi,\lambda) = -\frac{GM_{\oplus}}{r} \left[1 + \sum_{\ell=2}^{\infty} \sum_{m=0}^{\ell} \left(\frac{R_{\oplus}}{r}\right)^{\ell} P_{\ell m}(\sin\varphi) (C_{\ell m}\cos m\lambda + S_{\ell m}\sin m\lambda) \right]$$
$$\left\langle \dot{\Omega}_{class} \right\rangle_{sec} = -\frac{3}{2} n \left(\frac{R_{\oplus}}{a}\right)^{2} \frac{\cos i}{(1-e^{2})^{2}} \left\{ -\sqrt{5}\bar{C}_{2,0} \right\} + \cdots$$

$$\begin{split} \dot{\Omega}_{Lageos}^{Obser} &\approx +126 \ deg/yr \quad \dot{\Omega}_{LageosII}^{Obser} \approx -231 \ deg/yr \\ G &\cong 6.670 \cdot 10^{-8} cm^3 s^{-2} g^{-1} \\ J_{\oplus} &\cong 5.861 \cdot 10^{40} cm^2 g s^{-1} \\ c &\cong 2.99792458 \cdot 10^{10} \ cm/s \end{split}$$

$30 \text{ mas} \cong 1.8 \text{ m in } 1\text{-year}$

Therefore, the correct modelling of the even zonal harmonics ($\ell = even$, m = 0) represents the main challenge in this kind of measurements, since they have the same signature of the relativistic effect but much larger amplitudes

$$\left\langle \dot{\Omega}_{class} \right\rangle_{sec} = -\frac{3}{2}n \left(\frac{R_{\oplus}}{a}\right)^2 \frac{\cos i}{(1-e^2)^2} \left\{-\sqrt{5}\bar{C}_{2,0}\right\} + \cdots$$

By solving a linear system of three equations in three unknowns, we can solve for the relativistic precession while reducing the impact in the measurement of the non perfect knowledge of the Earth's gravitational field:

$$\begin{cases} \dot{\Omega}_{2}^{L1} \delta \bar{C}_{2,0} + \dot{\Omega}_{4}^{L1} \delta \bar{C}_{4,0} + \dot{\Omega}_{LT}^{L1} \mu + \dots = \delta \dot{\Omega}_{res}^{L1} \\ \dot{\Omega}_{2}^{L2} \delta \bar{C}_{2,0} + \dot{\Omega}_{4}^{L2} \delta \bar{C}_{4,0} + \dot{\Omega}_{LT}^{L2} \mu + \dots = \delta \dot{\Omega}_{res}^{L2} \\ \dot{\Omega}_{2}^{LR} \delta \bar{C}_{2,0} + \dot{\Omega}_{4}^{LR} \delta \bar{C}_{4,0} + \dot{\Omega}_{LT}^{LR} \mu + \dots = \delta \dot{\Omega}_{res}^{LR} \end{cases}$$

$$\Omega_{GR}^{comb} = 50.17 mas/yr$$

$$\mu = \frac{\dot{\Omega}^{comb}}{\dot{\Omega}^{comb}_{GR}} = \begin{cases} 1 & \bullet \text{ In General Relativity} \\ 0 & \bullet \text{ In Newtonian physics} \end{cases}$$

$$k_1 \cong 0.345$$
$$k_2 \cong 0.073$$

 $\dot{\Omega}^{comb} = \dot{\delta\Omega}^{L1}_{res} + k_1 \delta \dot{\Omega}^{L2}_{res} + k_2 \delta \dot{\Omega}^{LR}_{res}$

 $\left\langle \delta \dot{\Omega}_{class} \right\rangle_{sec} = -\frac{3}{2}n \left(\frac{R_{\oplus}}{a}\right)^2 \frac{\cos i}{(1-e^2)^2} \left\{ -\sqrt{5}\delta \bar{C}_{2,0} \right\} + \cdots$ $k_1 \text{ and } k_2 \text{ are such that to cancel the unmodelled effects/errors}$ of two even zonal harmonics (order *m*=0) of the Earth's gravitational field: quadrupole and octupole coefficients

By solving a linear system of three equations in three unknowns, we can solve for the relativistic precession while reducing the impact in the measurement of the non perfect knowledge of the Earth's gravitational field:

1. Ciufolini, I.; Lucchesi, D.; Vespe, F.; Mandiello, A. Measurement of dragging of inertial frames and gravitomagnetic field using laserranged satellites. *Nuovo Cim.* A, 109, 575–590, 1996

2. Ciufolini, I. On a new method to measure the gravitomagnetic field using two orbiting satellites. *Nuovo Cim*. A, 109, 1709–1720, 1996

3. Lucchesi, D.M.; Balmino, G. The LAGEOS satellites orbital residuals determination and the Lense Thirring effect measurement. *Plan. Space Sci.*, 54, 581–593, 2006

IL NUOVO CIMENTO Vol. 109 A. N. 5 Maggio 1996 Vol. 109 A. N. 12 IL NUOVO CIMENTO Dicembre 1996 On a new method to measure the gravitomagnetic field Measurement of dragging of inertial frames and gravitomagnetic using two orbiting satellites field using laser-ranged satellites I. CIUFOLINI⁽¹⁾, D. LUCCHESI⁽²⁾, F. VESPE⁽³⁾ and A. MANDIELLO⁽⁴⁾ I. CIUFOLINI (1) IFSI-CNR-Frascati, and Dipartimento Aerospaziale IFSI-CNR - Frascati, Italy Università «La Sapienza» - Roma, Italy Dipartimento Aerospaziale, Università di Roma «La Sapienza» - Roma, Italy ⁽²⁾ Dipartimento di Matematica, Università di Pisa - Pisa, Italy (³) ASI-CGS - Matera, Italy (ricevuto il 20 Settembre 1996; approvato il 15 Novembre 1996) (4) IFSI-CNR - Frascati (Roma), Italy (ricevuto il 28 Febbraio 1996; approvato il 3 Aprile 1996) Summary. — We describe a new method to obtain the first direct measurement of the Lense-Thirring effect, or dragging of inertial frames, and the first direct detection of the gravitomagnetic field. This method is based on the observations of Summary. — By analysing the observations of the orbits of the laser-ranged satellites LAGEOS and LAGEOS II, using the program GEODYN, we have the orbits of the laser-ranged satellites LAGEOS and LAGEOS II. By this new obtained the first direct measurement of the Lense-Thirring effect, or dragging of approach one achieves a measurement of the gravitomagnetic field with accuracy of inertial frames, and the first direct experimental evidence for the gravitomagnetic about 25%, or less, of the Lense-Thirring effect in general relativity. field. The accuracy of our measurement is of about 30%. PACS 11.90 – Other topics in general field and particle theory. PACS 11.90 - Other topics in general field and particle theory. PACS 04.80.Cc - Experimental test of gravitational theories. PACS 04.80.Cc - Experimental tests of gravitational theories.

Available online at www.sciencedirect.com

Planetary and Space Science 54 (2006) 581-593

Planetary and Space Science

www.elsevier.com/locate/pss

The LAGEOS satellites orbital residuals determination and the Lense–Thirring effect measurement

David M. Lucchesi^{a,b,*}, Georges Balmino^c

^aIstituto di Fisica dello Spazio Interplanetario (IFSI/INAF), Via Fosso del Cavaliere No. 100, 00133 Roma, Italy ^bIstituto di Scienza e Tecnologie della Informazione (ISTI/CNR), Via Moruzzi No. 1, 56124 Pisa, Italy ^cGroupe de Recherche de Géodésie Spatiale (GRGS), 18 Avenue Edouard Belin, 31401 Toulouse, France

Received 6 December 2004; received in revised form 28 February 2006; accepted 9 March 2006

Abstract

The method applied since 1996 for the analysis of the orbital residuals of the LAGEOS satellites in order to measure the Lense-Thirring effect has been the subject of the present work. This method, based on the difference between the orbital elements of consecutive arcs, is explained and analysed also from the analytical point of view. It is proved that this "difference method" works well for the determination of the secular effects, as in the case of the relativistic precession induced by the Earth's angular momentum, but also very useful for the determination and study of the long-term periodic effects. Indeed, the only limitation in the determination of the given perturbation and from the orbital arc length chosen for the satellite during the data analysis. In the case of the Yarkovsky–Schach effect, the main non-gravitational perturbation seen in the LAGEOS satellites orbital residuals, in particular in its perigee rate and eccentricity vector excitation residuals, we show that the "difference method" is quite good also for the determination of the long-period perturbations induced by this subtle non-conservative force.

Keywords: LAGEOS satellites; Orbital residuals determination; Secular and long-period perturbations; Gravitational and non-gravitational perturbations; Yarkovsky-Schach effect; General relativity; Lense-Thirring effect

On the modelling of the even zonal harmonics

A non-exhaustive list of references

- Yoder C.; Williams J.; Dickey J.; Schutz B.; Eanes R.; Tapley B. Secular variations of Earth's gravitational harmonic J2 coefficient from Lageos and nontidal acceleration of Earth rotation. Nature 303, pp. 757-762, **1983**
- Cheng, M.K.; Shum, C.K.; Tapley, B.D. Determination of long-term changes in the Earth's gravity field from satellite laser ranging observations. *J. Geophys. Res.*, 102, 22377, **1997**
- Devoti, R.; Luceri, V.; Sciarretta, C.; Bianco, G.; Di Donato, G.; Vermeersen, L.L.A.; Sabadini, R. The SLR secular gravity variations and their impact on the inference of mantle rheology and lithospheric thickness. *Geophys. Res. Lett.*, 28, 555–858, 2001
- Cox, C.M.; Chao, B.F. Detection of a Large-Scale Mass Redistribution in the Terrestrial System Since 1998. *Science*, 297, 831–833, 2002
- Cheng, M.; Tapley, B.D.; Ries, J.C. Deceleration in the Earth's oblateness. J. Geophys. Res. Solid Earth, 118, 740–747, 2013
- Chen, J.L.; Wilson, C.R.; Ries, J.C.; Tapley, B.D. Rapid ice melting drives Earth's pole to the east. *Geophys. Res. Lett.*, 40, 2625–2630, **2013**
- Cheng, M.; Ries, J.C. Decadal variation in Earth's oblateness (J2) from satellite laser ranging data. *Geophys. J. Int.*, 212, 1218–1224, **2018**

$$C_{2,0} = C_{2,0}(t_0) + \dot{C}_{2,0}(t - t_0)$$

				ICGEM IN	emational Center for Global G	avity Field Models					
	Î				ICO	ЭЕ М			G Helmha Pot		LASERRANGED
			Gl	oba	al Gravity	Field Mod	els				Stati
ICGEM Home	Wek	indly ask the authors of	f the n	nodels to	check the links to the	e original websites of the mo	dels from tin	ne to time.			
Cravity Field Medels	Pleas	se let us know if someth	ning h	as chang	jed.						Mode
avity Field Models	The ta	ble can be interactively re-sort	ted by c	licking on t	he column header fields (Nr.	Model, Year, Degree, Data, Referen	ce).				Widde
Static Models	In the	data column, the datasets use	d in the	e developm	ent of the models are summ	arized, where A is for altimetry, S is f	or satellite (e.g.,	GRACE, GO	CE, LAG	EOS),	
Temporal Models	G for g	ground data (e.g., terrestrial, sł	hipborn	e and airbo	orne measurements) and T is	s for topography.					
Topographic Gravity Field Models	The lin For ma	nks calculate and show in the odels with a registered doi ("di	last co igital ob	lumns of th ject identif	e table directly invoke the Ca er") the last column contains	alculation Service and Visualization μ the symbol ✓, which directly opens	bage for the sele the page on "htt	cted model. p://dx.doi.org/	r".		
Calculation Service	lf you (click on the reference, the com	nplete li	st of refere	nces can be seen.						
Regular grids	Nr	Model	Year	Degree	Data	References	Download	Calculate	Show	DOI	
User-defined points	176	XGM2019e_2159	2019	2190 5540 760	A, G, S(GOCO06s), T	Zingerle, P. et al, 2019	gfc zip gfc zip gfc zip	Calculate	Show	~	
3D Visualisation	175	GO_CONS_GCF_2_TIM_R6e	2019	300	G (Polar), S(Goce)	Zingerle, P. et al, 2019	gfc zip	Calculate	Show	1	
Statia Madala	174	ITSG-Grace2018s	2019	200	S(Grace)	Mayer-Gürr, T. et al, 2018	gfc zip	Calculate	Show	1	
Stauc Models	173	EIGEN-GRGS.RL04.MEAN-	2019	300	S	Lemoine et al, 2019	gfc zip	Calculate	Show	~	
Temporal Models	172	GOCO06s	2019	300	S	Kvas et al., 2019	afc zip	Calculate	Show	1	
Trend & Amplitude	171	GO_CONS_GCF_2_TIM_R6	2019	300	S(Goce)	Brockmann, J. M. et al,	gfc zip	Calculate	Show	1	
Spherical Harmonics	470	CO. CONS. CCE 3 DID. 53	2040	200	C	2014	afa -i-	Coleviate	Charry		
	1/0	GO_CONS_GCF_Z_DIR_R0	2019	240	S G S(Gore) S(Grace)	Lu B et al. 2019	gic zip	Calculate	Show	-	
Evaluation	168	Tongii Grace02k	2010	180	S(Grace)	Chen O et al 2018	gic zip	Calculate	Show	~	
Spectral domain	167	SGG-UGM-1	2018	2159	EGM2008, S(Goce)	Liang, W. et al., 2018 & Xu, X. et al. (2017)	gfc zip	Calculate	Show	~	
GNSS Leveling	166	GOSG01S	2018	220	S(Goce)	Xu, X. et al., 2018	gfc zip	Calculate	Show	1	
	165	IGGT_R1	2017	240	S(Goce)	Lu, B. et al, 2017	gfc zip	Calculate	Show	1	
	404	IfE_GOCE05s	2017	250	S	Wu, H. et al, 2017	gfc zip	Calculate	Show	1	
Documentation	164	_									
Documentation FAQ	164	GO_CONS_GCF_2_SPW_R5	2017	330	S(Goce)	Gatti, A. et al, 2016	gfc zip	Calculate	Show	1	*

Temporal Models

5.8

From **GRACE** Temporal Solutions

Linear fit to better capture evolution over time $\bar{C}_{\ell,0}(t) = \bar{C}_{\ell,0}(t_0) + \dot{\bar{C}}_{\ell,0}(t - t_0)$

The measurement of the Lense-Thirring effect

Starting from December 2017 and until spring 2019 we carried out an intense analysis activity:

- for different models of static gravitational field
- and from **GRACE's** monthly solutions from three different analysis centers

zonal harmonics

but not only

For each of these analysis we performed a **POD** over a time of about 6.5 years (over 7-day arcs), processing a considerable number of **SLR** observations in the form of Normal Points, for an average of about 1344 (**LAGEOS**), 1207 (**LAGEOS II**) and 1487 (**LARES**) normal points

- We considered several models for the background gravitational field of the Earth
 - This allows to highlight possible systematics among the different models
- For the first **10/15** even zonal harmonics we considered their explicit time dependency following the monthly solutions from **GRACE** measurements
 - This has reduced the systematic error of the background gravitational field
- Together with the relativistic **Lense-Thirring** precession we estimated also some of the lowdegree even zonal harmonics (ℓ = even and m = 0) of the background gravitational field
 - This allows to estimate the direct correlation between the relativistic Lense-Thirring precession with the coefficients of the gravitational field

- The relativistic **Lense-Thirring** precession has been measured both in the residuals of the rates of the combined nodes and in their integration
 - This is the first time that the measurement has been performed on the rate of the combined observables
- The measurement has been obtained both via linear fits and non-linear fits
 - This is also the first time that a reliable measurement of the Lense-Thirring precession has been obtained by means of a simple linear fit

- The data reduction of the satellites orbit has been done with GEODYN II (NASA/GSFC) on a time span of about 6.5 years (2359 days) from MJD 56023, i.e. April 6th 2012, and we computed the effects on the orbit elements of LAGEOS, LAGESOS II and LARES:
 - Background gravity model: GGM05S + other fields from GRACE
 - Arc length of 7 days
 - No empirical accelerations
 - Thermal effects (Yarkovsky Schach and Rubincam) not modelled
 - **O** General relativity modelled with the exception of the Lense-Thirring effect

- 1. EIGEN-GRACE02S (2004)
- 2. GGM05S (2014): official field of the ILRS
- 3. ITU_GRACE16 (2016)
- 4. Tonji-Grace02s (2017)

Table 2. Models currently used, within the LARASE research program, for the analysis of the orbit of the two LAGEOS and LARES satellites. The models are grouped in gravitational perturbations, non-gravitational perturbations and reference frames realizations.

Model For	Model Type	Reference
Geopotential (static)	EIGEN-GRACE02S/GGM05S	[84,90,91]
Geopotential (time-varying, tides)	Ray GOT99.2	[92]
Geopotential (time-varying, non tidal)	IERS Conventions 2010	[89]
Third–body	JPL DE-403	[93]
Relativistic corrections	Parameterized post-Newtonian	[88,94]
Direct solar radiation pressure	Cannonball	[46]
Earth albedo	Knocke-Rubincam	[63]
Earth-Yarkovsky	Rubincam	[56,64,65]
Neutral drag	JR-71/MSIS-86	[50,51]
Spin	LASSOS	[42]
Stations position	ITRF2008	[95]
Ocean loading	Schernek and GOT99.2 tides	[46,92]
Earth Rotation Parameters	IERS EOP C04	[96]
Nutation	IAU 2000	[97]
Precession	IAU 2000	[98]

Article

A 1% Measurement of the Gravitomagnetic Field of the Earth with Laser-Tracked Satellites

David Lucchesi ^{1,2,3,*}, Massimo Visco ^{1,3}, Roberto Peron ^{1,3}, Massimo Bassan ^{3,4}, Giuseppe Pucacco ^{3,4}, Carmen Pardini ², Luciano Anselmo ² and Carmelo Magnafico ^{1,3}

- ¹ Istituto di Astrofisica e Planetologia Spaziali (IAPS)—Istituto Nazionale di Astrofisica (INAF), Via Fosso del Cavaliere 100, Tor Vergata, 00133 Roma, Italy; massimo.visco@inaf.it (M.V.); roberto.peron@inaf.it (R.P.); carmelo.magnafico@inaf.it (C.M.)
- ² Istituto di Scienza e Tecnologie dell'Informazione (ISTI)—Consiglio Nazionale delle Ricerche, Via G. Moruzzi 1, 56124 Pisa, Italy; carmen.pardini@isti.cnr.it (C.P.); luciano.anselmo@isti.cnr.it (L.A.)
- ³ Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy; massimo.bassan@roma2.infn.it (M.B.); giuseppe.pucacco@roma2.infn.it (G.P.)
- ⁴ Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy
- * Correspondence: david.lucchesi@inaf.it

Received: 16 July 2020; Accepted: 26 August 2020; Published: 31 August 2020

MDP

Results for μ from the linear system

ADAGE

Results for μ from the linear system

Cumulative sum for μ

Lense-Thirring effect measurement: frame dragging

Errors @ 95% CL

Model	$\mu\pm\delta\mu$	$\mu - 1$
$\operatorname{GGM05S}$	1.0053 ± 0.0074	+0.0053
EIGEN-GRACE02S	1.0002 ± 0.0074	+0.0002
ITU_GRACE16	0.9996 ± 0.0074	-0.0004
Tonji-Grace02s	1.0008 ± 0.0074	+0.0008

$$\mu_{meas} - 1 = 1.5 \times 10^{-3} \pm 7.4 \times 10^{-3}$$

Lense-Thirring effect measurement: frame dragging

Errors @ 95% CL

Model	$\mu\pm\delta\mu$	$\mu - 1$
$\operatorname{GGM05S}$	1.0053 ± 0.0074	+0.0053
EIGEN-GRACE02S	1.0002 ± 0.0074	+0.0002
ITU_GRACE16	0.9996 ± 0.0074	-0.0004
Tonji-Grace02s	1.0008 ± 0.0074	+0.0008

$$\mu_{meas} - 1 = 1.5 \times 10^{-3} \pm 7.4 \times 10^{-3} \pm 16 \times 10^{-3}$$

Estimation of the systematic errors

The detailed description of the error budget, with the exception of the tidal effects, is the subject of a forthcoming paper

Solid and Ocean tides

With this precise and accurate measurement of the **GR's Lense-Thirring** precession

• new constraints on alternative theories of gravitation will soon be derived (in preparation)

Results from the linear system: μ , $\delta \bar{C}_{2,0}$, $\delta \bar{C}_{4,0}$ = $\dot{\alpha}_{4}^{L1} \delta \bar{C}_{4,0} + \dot{\alpha}_{LT}^{L1} \mu = \delta \dot{\alpha}_{res}^{L1}$ $\dot{\alpha}_{2}^{L2} \delta \bar{C}_{2,0} + \dot{\alpha}_{4}^{L2} \delta \bar{C}_{4,0} + \dot{\alpha}_{LT}^{L2} \mu = \delta \dot{\alpha}_{res}^{L2}$ $\dot{\alpha}_{2}^{L2} \delta \bar{C}_{2,0} + \dot{\alpha}_{4}^{L2} \delta \bar{C}_{4,0} + \dot{\alpha}_{LT}^{L2} \mu = \delta \dot{\alpha}_{res}^{L2}$

3 × 10⁻¹⁰

 $\delta \bar{C}_{2,0}$

-3

0

500

1000

Time [days from MJD 56030]

(a) Corrections to the quadrupole.

1500

 $\mathcal{L}_{\mathbf{r}} = \mathcal{L}_{\mathbf{r}} =$

2000

Lense-Thirring parameter μ

2

-3 ` 0

Results for the Lense-Thirring effect from the residuals in $\boldsymbol{\mu}$

A statistical approach to the measurement of $\boldsymbol{\mu}$

Figure 7. (a) Realizations for μ after 50,000 random permutations of the 337 residuals of Figure 3. (b) Distribution of the results for the Lense-Thirring parameter μ after the 50,000 permutations. For each realization, μ is obtained by means of the slope of the best linear fit like in Figure 4. The GGM05S model was considered as the background gravitational field of the Earth.

Figure 8. Distribution of the results for the Lense-Thirring parameter μ after 50,000 random permutations. The Gaussian fit for each of the gravitational fields considered in our analyses are shown.

Many thanks for your kind attention