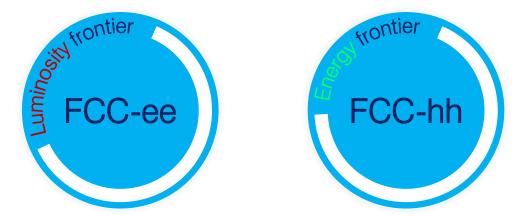
Future Circular Collider Michael Benedikt CERN 22 September, 2020

Future Circular Collider Study

- Conceptual Design Study (PHASE 1)
- For a post-LHC Research Infrastructure
- Carried out with > 130 institutes worldwide
- Launched in 2014
- Hosted and coordinated by CERN
- Conceptual design report released in 2018
- Entering the capacity building phase now

FED FCC CDR and Study Documentation


- FCC-Conceptual Design Reports:
 - Vol 1 Physics, Vol 2 FCC-ee, Vol 3 FCChh, Vol 4 HE-LHC
 - CDRs published in European Physical Journal C (Vol 1) and ST (Vol 2 – 4)

EPJ C 79, 6 (2019) 474 , EPJ ST 228, 2 (2019) 261-623, EPJ ST 228, 4 (2019) 755-1107 , EPJ ST 228, 5 (2019) 1109-1382

- Summary documents provided to EPPSU SG
 - FCC-integral, FCC-ee, FCC-hh, HE-LHC
 - Accessible on http://fcc-cdr.web.cern.ch/

The Vision

FCC defines a **science mission** that lasts up to the end of the 21st century to address questions that cannot be answered by the Standard Model of Particle Physics today.

Two complementary particle colliders with multiple interaction points in a 100 km long, circular tunnel with re-usable infrastructure.

ESPPU 2020

Core sentence and main request "order of the further FCC study":

"Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage. Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update."

Scope of the Study

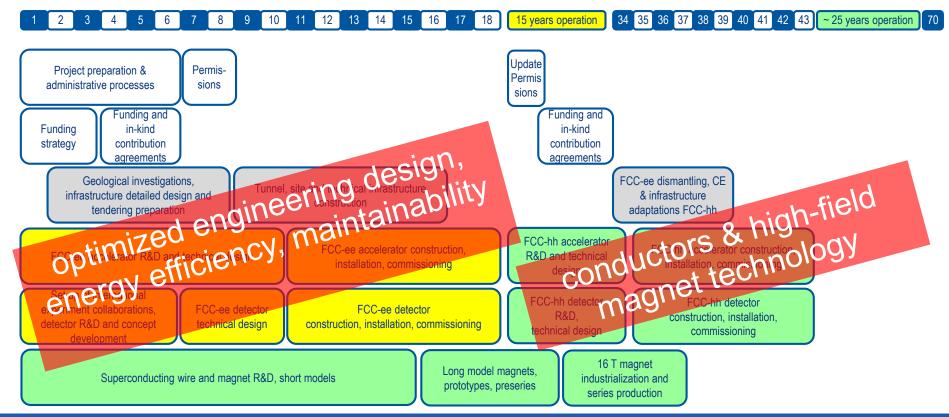
e+e- collider (FCC-ee)

- First step at 90 350 GeV
- Extreme luminosities (5 x 10³⁶)

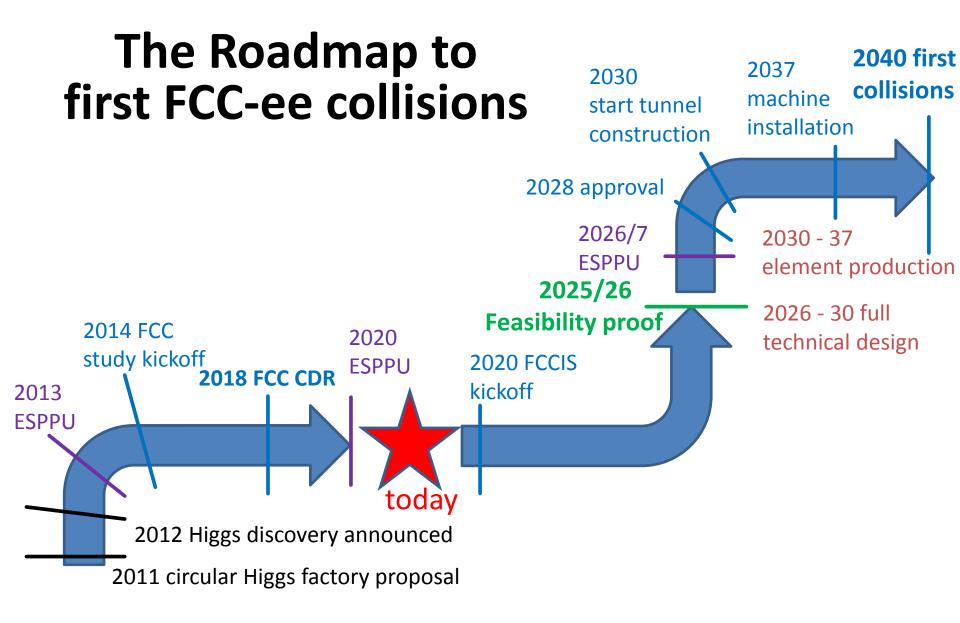
pp collider (FCC-hh)

The most demanding machine, which defines the infrastructure requirements

- 100 TeV collision energy
- 100 km circumference

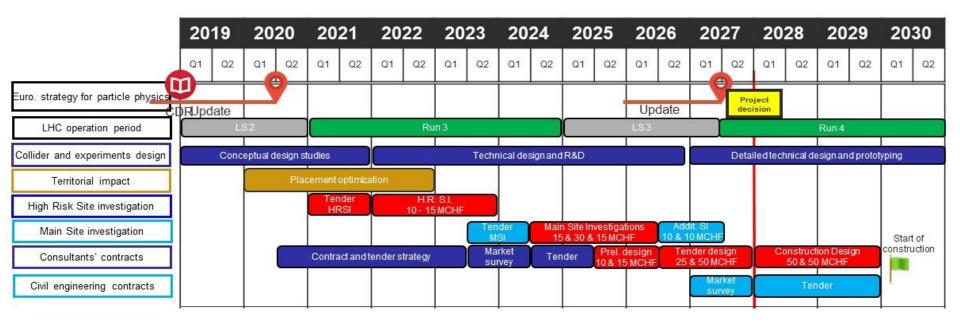


Schematic of an 80 – 100 km long tunnel


Leverage existing infrastructures at CERN, know-how, successful framework to manage a large-scale science project at global scale. Capital of trust among international partners coming from different cultures and being governed by different administrative systems. Engage CERN as the cohesion-building entity and to promote the project on behalf of an international collaboration.

The Plan

A mission of that scale and duration requires an early preparation to ensure a sustainable plan for construction and operation. **2021-2028** is the vital phase to **build up a user community** and a committed collaboration of **topically complementary partners from academia and industry for design and R&D**.



CE preparatory activities 2020 - 2030

- Schedule of major processes leading to start of construction begin 2030.
- For proof of principle feasibility: High risk site investigations n 2022/23.
- Followed by main site investigations and CE planning contracts.
- Accompanying activities related to project preparation with host states such as environmental evaluation, preparation of "debat public", etc.

Smart Specialisation Strategy

Innovation Value Chain

- FCC implements the EU policy of smart specialization aiming at enhancing regional knowledge generation and diffusion to economy and society
- Build up a committed network of geographically balanced and topically complementary <u>public-</u> <u>private R&D&I poles, promoting regional innovation</u> <u>value chains</u> for R&D of FCC key enabling technologies
- CERN focuses on accelerator design, user community capacity building, setting up the project organisation and catalyzing the cooperation of technology partners.
- Preparation of <u>large-scale industrial involvement via</u> <u>collaboration with local – regional scientific partners</u> <u>as research institutes and universities</u>.

Key Technologies (i)

- Superconducting RF cavities
 - Thin film coating
 - Rapid, high quality, low cost forming
- Efficient RF power sources
 - High efficiency klystrons
 - Scalable solid state amplifiers
- Reliable and efficient electricity distribution
 - MVDC grids
 - Energy recovery and short term buffering
 - Cost-effective substations with minimum real-estate needs
- Waste heat recovery, storage and re-use

Key Technologies (ii)

- Resource efficient cooling
 - Closed loop cooling systems
 - Water use and maintenance reduction
 - Heat storage
- Excavation materials re-use
 - Molasse materials applications within project and outside project
 - Cost-efficient pollutant separation (hydrocarbures, heavy metals)
 - Excavation materials status accounting, tracking and tracing
- Cost-effective, energy efficient and modular architecture
 - Industrial buildings that are integrated with the landscape, energy efficient, cost efficient and modular
- Cost effective tunnelling
 - Alternative inner lining construction (e.g. fibre based)
 - Alternative shaft construction technologies
 - TBM "plants" (look-ahead, adjust, bore, analyse, separate, pre-process, transfer)

Our DNA Advance technologies together with partners involved in industrial R&D so that FCC can be built and operated in a sustainable way and economic benefits are created in the regions participating in the project.

H2020 DS FCC Innovation Study 2020-24

Partners

Beneficiaries

Design optimisation, construction planning, environmental impact assessment, management of excavation materials, user community building and public engagement, socio-economic impact,...

Worldwide Collaboration

Summary and Outlook

- 1st phase of FCC design study completed → baseline machine designs, performance matching physics requirements, in 4 CDRs
- Integrated FCC programme submitted to the European Strategy Update 2019/20
 request for feasibility study
- Next steps: concrete local/regional implementation scenario in collaboration with host state authorities, accompanied by machine optimization, physics studies and technology R&D, supported by EC H2020 Design Study FCCIS
- Long term goal: a world-leading HEP infrastructure for the 21st century to push the particle physics precision and energy frontions for