

UNIVERSITÀ DEGLI STUDI DI MILANO

FACOLTÀ DI SCIENZE E TECNOLOGIE CORSO DI LAUREA TRIENNALE IN FISICA ANNO ACCADEMICO 2019/2020

Measurement of the inclusive isolatedphoton yields in pp collisions at √s =13 TeV with the ATLAS detector

Candidate: Davide Picchieri

Supervisors: Prof. Leonardo Carminati

Dott.ssa Silvia Resconi

Dott.ssa Federica Piazza

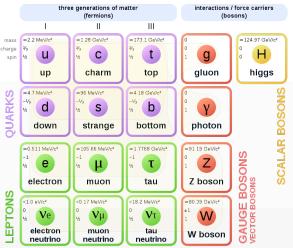
LHC and ATLAS Physics

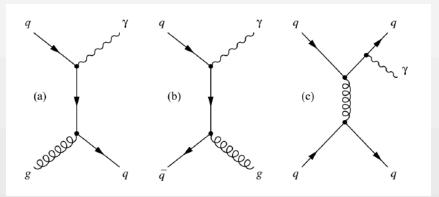
The Large Hadron Collider

- The largest particle accelerator in the world
- Centre-of-mass energy of 13 TeV
- Instantaneous luminosity of $10^{34} cm^{-2} s^{-1}$
- Objectives: test the Standard Model and look for new physics

The Standard Model

- A theory describing three of the four fundamental forces and the interactions among fermions shown in the table


Prompt Photon Production


- Direct Photon: comes directly from hard interactions
- Fragmentation Photon: it is the product of collinear fragmentation of a final state parton

Aim of the Thesis

- To measure the prompt photon yield
- Subtract the background noise, usually final state jets mistaken as photons

Standard Model of Elementary Particles

The ATLAS Detector

The ATLAS Experiment

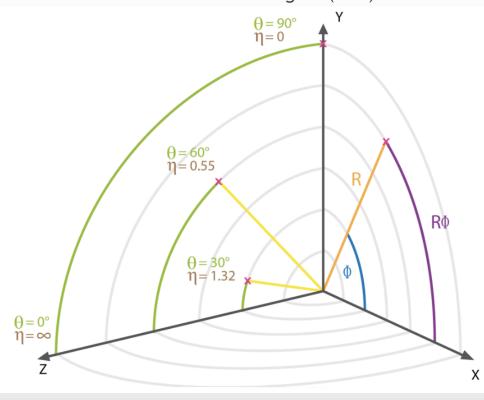
- Located at one of the collision points between the beams of protons.
- It is a general-purpose detector composed by three main systems

The Inner Detector

- Reconstructs the tracks of charged particle thanks to the Central Solenoidal Magnet (CSM)

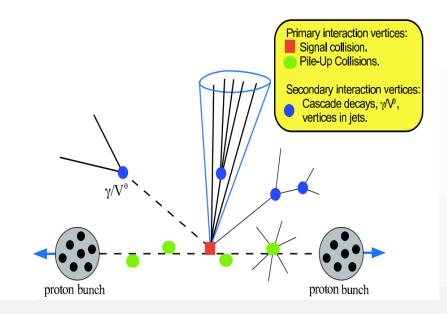
The Calorimeters

- Located after the CSM and measure the energy lost by electrons, photons and hadrons as they pass through the detector.
- Composed by an Electromagnetic
 Calorimeter and an Hadronic Calorimeter

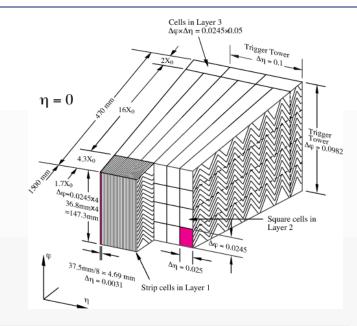

The Muon Spectrometer

 Measures the muons thanks to some Toroidal Magnets dedicated to it

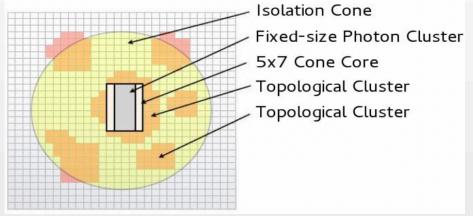
The Trigger System


- Level-1 Trigger is hardware based and selects up to 100'000 events per second
- The High Level Trigger further selects the events to get to ~1000 events per second

Photon Recontruction

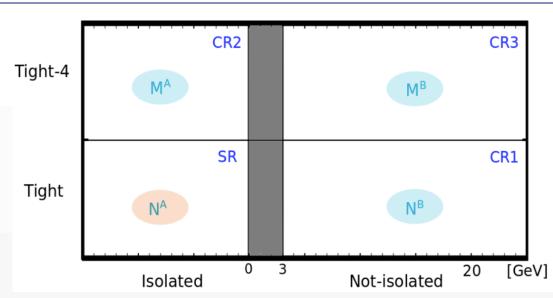

- Reconstruction starts from three separate steps:
 - Track reconstruction happens in the Inner Detector
 - Cluster Reconstruction happens in the EM Calorimeter via the Topo-Cluster Algorithm
 - Conversion Vertex Reconstruction happens in the Inner Detector
- A cluster is then matched with a track or a conversion vertex if possible
 - If it matches with a track it's reconstructed as an electron
 - If it matches to a conversion vertex as a converted photon
 - If it doesn't match with either as an unconverted photon

Photon Identification


Identification of photon candidates

- Relies on selections using calorimetric variables.
- The loose selection is based on shower shapes in the second layer of the electromagnetic calorimeter and on the energy deposited in the hadronic calorimeter.
- The tight selections, 9 in total, add information from the finely segmented strip layer of the calorimeter and are separately optimized for converted and unconverted photons

Isolation of the photon candidate


- Required to further reject background photons
- Defined as the sum of transverse energy in topoclusters in the cone of radius $\Delta R = \sqrt{((\Delta \eta)^2 + (\Delta \phi)^2)} < 0.4$
- If it's smaller than $0.022p_T + 2.45$ GeV the photon fulfills the requirement

2-Dimensional Sideband Method

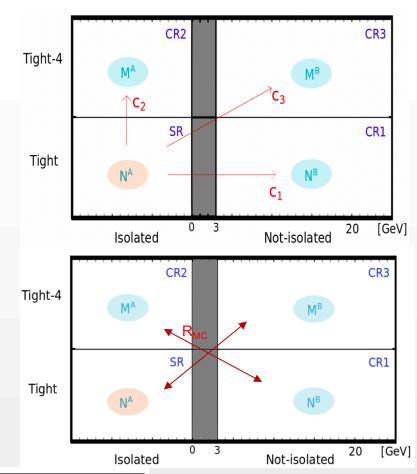
Purity of the Signal

 Fraction of true photons to the total number of photons in the signal region

Two starting hypotheses:

The correlation between the tightness and isolation is negligible: ${N_{bkg}^A}/{N_{bak}^B} = {M_{bkg}^A}/{M_{bkg}^B}$

- The number of true photons in the Control Regions is negligible in comparison to the number of fake photons: $N_{bkg}^{B} \gg N_{sig}^{B}$
- The purity is then $N_{sig}^A/N^A=1-N^AM^B/N^BM^A$


2-Dimensional Sideband Method

First MC input

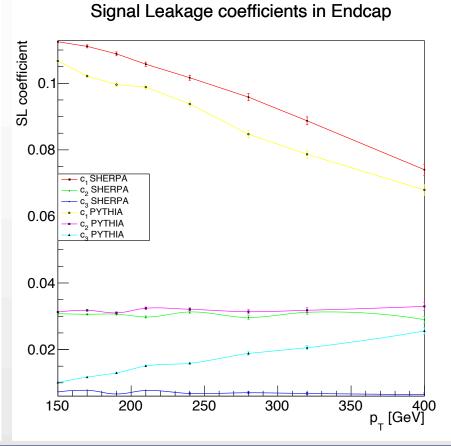
- Signal Leakage coefficients, account for the second hypothesis not being true
- The assumption is taken that the ratios $\frac{N_{sig}^B}{N_{sig}^A} \frac{M_{sig}^A}{N_{sig}^A} \frac{M_{sig}^B}{N_{sig}^A}$ are the same for the data and the MC simulation
- These ratio are defined as c_i , SL coefficient from SR to CR1-3

Second MC input

- Accounts for background correlation
- Rewriting the background in the Signal Region as a function of the background in the other three regions and then uses the values found in the simulations
- R_{MC} is $\frac{N_{bkg}^A M_{bkg}^B}{N_{bkg}^B M_{bkg}^A}$, and the signal is

$$N_{sig}^{A} = \frac{(M^{B} + N^{A}c_{3} - N^{B}c_{2}R_{MC} - M^{A}c_{1}R_{MC})(-1 + \sqrt{1 + \frac{4(c_{1}c_{2}R_{MC} - c_{3})(N^{A}M^{B} - N^{B}M^{A}R_{MC})}{(M^{B} + N^{A}c_{3} - N^{B}c_{2}R_{MC} - M^{A}c_{1}R_{MC})^{2}}}{2(c_{1}c_{2}R_{MC} - c_{3})}$$




Data processing

- For this study analysis software was configured in order to process the ATLAS data format in a more compact format (ROOT files)
- The production was run in batch mode on the Milano Tier3 computing facility via HTCondor to handle the high amount of data
- The total CPU time used for processing the 2015-2016 data with an integrated luminosity of 36 fb⁻¹ is ~1500 h, for a total of ~4x10⁷ events
- The total CPU time used for processing the data from PYTHIA and SHERPA event generator simulations is ~ 600 h each, for a total of ~10⁷ Events each

Signal Leakage coefficients

 The trend of the Signal Leakage coefficients is shown in the following two tables, one for Barrel and one for End-Cap

Correlation Factor for PYTHIA

• Since the R coefficients shows fluctuasions in the different regions of the $\eta-p_T$ space due to the limited number of events in each region, it seemed more reasonable to use the value calculated over the whole data set

Detector	p_T^{γ} [GeV]	R_{MC}	σR_{MC}	R_{MC}^{BARREL}	$\sigma \ R_{MC}^{BARREL}$	$R_{MC}^{p_T}$	$\sigma \; R_{MC}^{p_T}$	R_{MC}^{SB}	σR_{MC}^{SB}	Events
	150 - 170					1.98	0.26	2.00	0.32	1004.88
	170 - 190					1.59	0.22	2.39	0.38	1101.58
	190 - 210					1.37	0.19	1.76	0.29	928.494
Downal	210 - 240	1 6024	0.052	1 707	0.065	1.66	0.25	1.52	0.26	1091.63
Barrel	240 - 280	1.6934	0.053	1.797	0.065	1.73	0.25	1.61	0.27	1138.72
	280 - 320					1.36	0.22	1.13	0.21	867.477
	320 - 400					2.50	0.41	3.19	0.59	929.398
	400 - 900					1.31	0.23	1.46	0.28	941.057
Detector	p_T^{γ} [GeV]	R_{MC}	σR_{MC}	R_{MC}^{ENDCAP}	σR_{MC}^{ENDCAP}	$R^{p_T}_{MC}$	$\sigma R_{MC}^{p_T}$	R_{MC}^{SB}	σR_{MC}^{SB}	Events
	150 - 170					1.984	0.262	1.67	0.40	358.521
	170 - 190					1.59	0.22	0.42	0.13	338.838
	190 - 210					1.37	0.19	0.74	0.19	357.465
End Can	210 - 240	1 604	0.053	1 400	0.089	1.66	0.25	2.21	0.65	347.606
End-Cap	240 - 280	1.694	0.055	1.409	0.089	1.73	0.25	2.15	0.62	342.481
	280 - 320					1.36	0.22	2.52	0.86	233.061
	320 - 400					2.51	0.41	0.73	0.33	246.089
	400 - 900					1.32	0.23	0.79	0.36	180.53

Selection Process

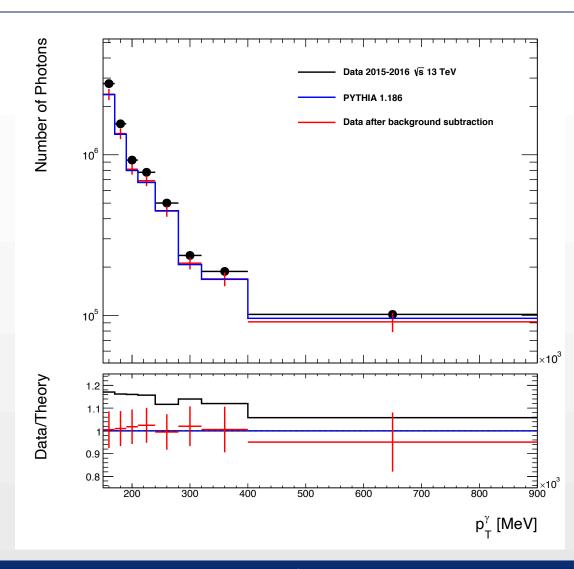
- The events must satisfy beam, detector and data-quality criteria:
 - Triggering requirement on the loose photon candidate transverse energy (E_T^{γ} >140 GeV)
 - Loose identification requirements
 - Needs to satisfy $|\eta| < 1.37$ or $1.52 < |\eta| < 1.37$ to avoid the crack region and $p_T > 150$ GeV
 - Tight selections as described before
 - Isolation requirement by imposing Isolation < 0,022 p_T + 2.45 GeV

	Loose selection	Cinematic selection	Tight selection	Isolation selection
Data	4.36×10^{7}	4.34×10^{7}	1.16×10^{7}	7.06×10^{6}
PYTHIA	9.39×10^{6}	9.38×10^{6}	8.44×10^{6}	7.47×10^{6}
SHERPA	1.10×10^{7}	1.10×10^{7}	1.03×10^{7}	9.26×10^{6}
PYTHIA weighted	7.82×10^{6}	7.82×10^{6}	7.14×10^{6}	6.08×10^{6}
SHERPA weighted	9.18×10^{6}	9.17×10^{6}	8.70×10^{6}	7.62×10^{6}

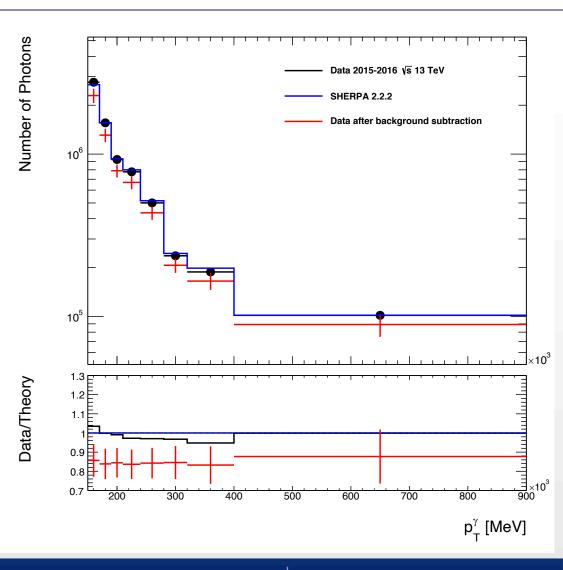
Purity and Systematic Errors

PYTHIA 1.186

$p_T^{\gamma} [ext{GeV}]$	Purity	Stat Error			Syst E	rror		Total Syst Error	Total Error
			c_1	c_2	c_3	Isolation	Tightness		
150 - 170	0.86	0.00051	0.0062	0.00088	0.00099	0.0028	0.069	0.069	0.069
170 - 190	0.87	0.00068	0.0072	0.0012	0.0012	0.0027	0.066	0.066	0.066
190 - 210	0.88	0.00089	0.0046	0.00028	0.0011	0.0027	0.065	0.065	0.065
210 - 240	0.89	0.00097	0.0041	0.0018	0.0014	0.0025	0.066	0.066	0.066
240 - 280	0.90	0.0012	0.0030	0.0012	0.0015	0.0023	0.070	0.070	0.070
280 - 320	0.90	0.0018	0.0035	0.0014	0.0018	0.0025	0.076	0.077	0.077
320 - 400	0.90	0.0020	0.0034	0.00094	0.0021	0.0024	0.089	0.089	0.089
400 - 900	0.90	0.0026	0.0024	0.0017	0.0028	0.0027	0.12	0.12	0.12


SHERPA 2.2.2

$p_T^{\gamma} \; [ext{GeV}]$	Purity	Stat Error			Syst E	rror		Total Syst Error	Total Error
			c_1	c_2	c_3	Isolation	Tightness		
150 - 170	0.86	0.00051	0.0062	0.00087	0.00099	0.0028	0.069	0.069	0.069
170 - 190	0.87	0.00068	0.0072	0.0012	0.0012	0.0027	0.066	0.066	0.066
190 - 210	0.88	0.00089	0.0046	0.00028	0.0011	0.0027	0.065	0.065	0.065
210 - 240	0.89	0.00097	0.0041	0.0018	0.0014	0.0025	0.066	0.066	0.066
240 - 280	0.89	0.0012	0.0030	0.0012	0.0015	0.0023	0.070	0.070	0.070
280 - 320	0.90	0.0018	0.0035	0.0014	0.0018	0.0025	0.076	0.077	0.077
320 - 400	0.90	0.0020	0.0034	0.00094	0.0021	0.0024	0.089	0.089	0.089
400 - 900	0.90	0.0026	0.0024	0.0017	0.0028	0.00275	0.12	0.12	0.12


Comparison Between Data and MC Simulations: PYTHIA

 Good Agreement between the Data after Background Subtraction and PYTHIA Simulation

Comparison Between Data and MC Simulations: SHERPA

- Overestimation of the photon yield by SHERPA
- The distribution shape is consistent with the Data

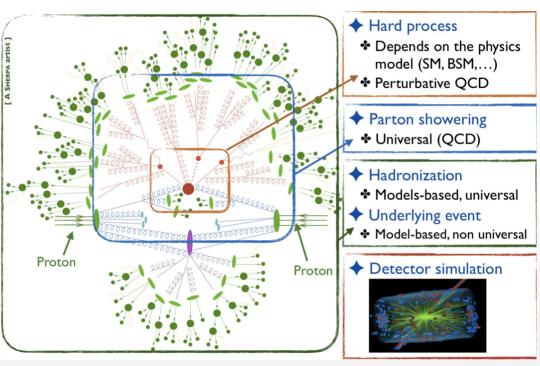
Conclusions

- The data collected in 2015 and 2016 by the ATLAS experiment with an integrated luminosity $L_{int} = 36 \text{ fb}^{-1}$ was confronted with the simulations performed by PYTHIA and SHERPA event generators.
- The background from jets faking photons was subtracted using the 2-Dimensional Sideband Method.
- The photon yields after background subtraction are well described by PYTHIA.
- On the contrary SHERPA seems to overestimate the event yields in data by $\sim 15\%$ on average although the shape of the p_T^γ distribution is well described.

Grazie per l'attenzione

Appendix: Cross Section and Luminosity

Cross Section


- It has the units of an area
- It is related to the probability of an event to happen

Luminosity

- It is the proportionality factor between the cross section and the event rate
- A high luminosity is necessary to observe an interaction with a small cross section

Appendix: Monte Carlo Event Generation

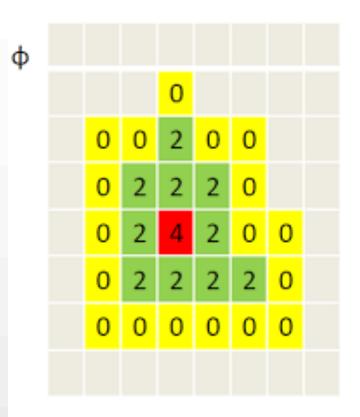
- Hard Process
- Parton Shower
- Hadronisation
- Underlying Event
- Decays of Unstable Particles
- Detector Simulation and Reconstruction

Appendix: The Electromagnetic Calorimeter

• Electromagnetic Calorimeter

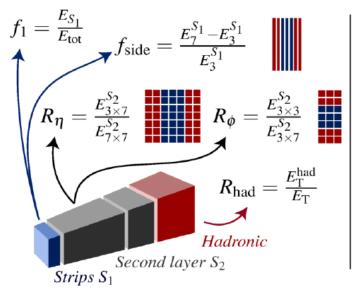
- Composed of two sections of the Liquid Argon Calorimeter, the Barrel ($|\eta| < 1.475$) and the End-Caps (1.375 $< |\eta| < 3.2$)
- For $|\eta| < 2.5$ it is composed of three sampling layers, the first one being a high-granularity layer

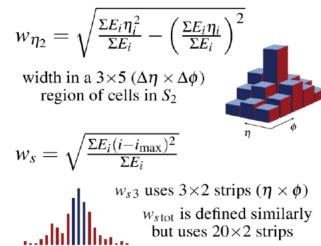
Made of two different materials

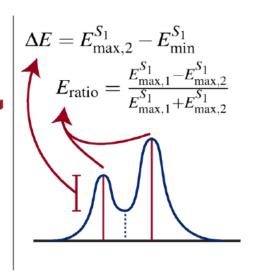

- Active layers are made of liquid argon and interact with the particles, generating a shower
- Passive layers are made of lead and collect the energy of the shower
- It has a nominal resolution for photons

and electrons of
$$\frac{\sigma E}{E} \approx \frac{10\% - 17\%}{\sqrt{E}} \oplus 0.7\%$$

Appendix: Topo-Cluster Algorith


 Reconstruction happens through the dynamic Topo-Cluster algorithm


- Clusters are formed from proto-clusters, cells with significance $\varsigma_{cell}^{EM} = |\frac{E_{cell}^{EM}}{\sigma_{noise,cell}^{EM}}| \ge 4$. Neighboring cells with significance ≥ 2 are added to form a cluster.
- If a cluster satisfies $f_{EM}M = \frac{E_{L1} + E_{L2} + E_{L3}}{E_{CLUS}} > 0.5$, where E_{Li} is the energy deposited in a EM layer, it becomes a seed cluster.



η

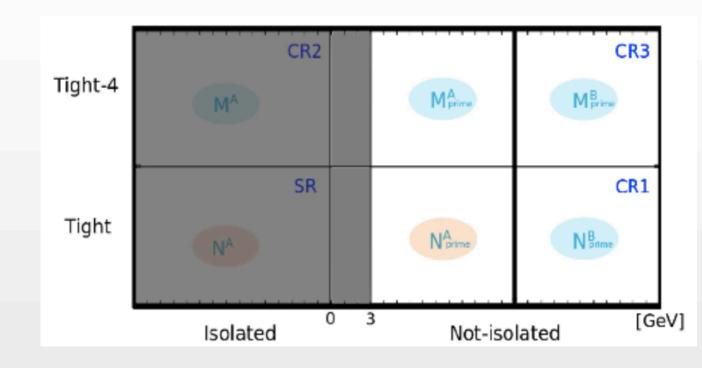
Appendix: Tight Selections

Appendix: PYTHIA Signal Leakage coefficients

Detector	$\mid p_T^{\gamma} \; ext{[GeV]} \mid$	$ c_1 $	$\sigma_{STAT}c_1$	c_2	$\mid \sigma_{STAT} c_2 \mid$	c_3	$\sigma_{STAT}c_3$
Barrel	150 - 170	0.1106	0.0003	0.02842	0.00008	0.00860	0.00005
Barrel	170 - 190	0.1122	0.0004	0.0295	0.0001	0.01078	0.00008
Barrel	190 - 210	0.1042	0.0005	0.0301	0.0001	0.0114	0.0001
Barrel	210 - 240	0.1008	0.0005	0.0303	0.0001	0.01365	0.0001
Barrel	240 - 280	0.0948	0.0006	0.0321	0.0002	0.0158	0.0002
Barrel	280 - 320	0.0877	0.0008	0.0327	0.0003	0.0195	0.0002
Barrel	320 - 400	0.0809	0.0008	0.0339	0.0003	0.0221	0.0003
Barrel	400 - 900	0.0684	0.0009	0.0392	0.0005	0.0289	0.0004
End-Cap	150 - 170	0.1067	0.0004	0.0313	0.0002	0.01013	0.00009
End-Cap	170 - 190	0.1022	0.0005	0.0318	0.0002	0.0117	0.0001
End-Cap	190 - 210	0.0996	0.0006	0.0310	0.0003	0.0123	0.0002
End-Cap	210 - 240	0.0989	0.0007	0.0324	0.0003	0.0151	0.0002
End-Cap	240 - 280	0.0938	0.0008	0.0321	0.0004	0.0159	0.0003
End-Cap	280 - 320	0.085	0.001	0.0314	0.0006	0.0188	0.0004
End-Cap	320 - 400	0.079	0.001	0.0318	0.0007	0.0206	0.0005
End-Cap	400 - 900	0.068	0.002	0.033	0.001	0.0256	0.0009

Appendix: SHERPA Signal Leakage coefficients

Detector	p_T^γ [GeV]	$ c_1 $	$\sigma_{STAT}c_1$	$ c_2 $	$\mid \sigma_{STAT} c_2 \mid$	c_3	$\sigma_{STAT}c_3$
Barrel	150 - 170	0.0980	0.0002	0.0289	0.0001	0.00430	0.00005
Barrel	170 - 190	0.0952	0.0003	0.0281	0.0002	0.00449	0.00006
Barrel	190 - 210	0.0931	0.0004	0.0295	0.0002	0.00451	0.00008
Barrel	210 - 240	0.0892	0.0004	0.0283	0.0002	0.00437	0.00009
Barrel	240 - 280	0.0849	0.0005	0.0299	0.0003	0.0044	0.0001
Barrel	280 - 320	0.0815	0.0007	0.0306	0.0004	0.0041	0.0001
Barrel	320 - 400	0.0756	0.0007	0.0320	0.0005	0.0043	0.0002
Barrel	400 - 900	0.0661	0.0009	0.0358	0.0006	0.0042	0.0002
End-Cap	150 - 170	0.1125	0.0004	0.0308	0.0002	0.00724	0.00009
End-Cap	170 - 190	0.1111	0.0005	0.0306	0.0002	0.0077	0.0001
End-Cap	190 - 210	0.1088	0.0006	0.0306	0.0003	0.0067	0.0001
End-Cap	210 - 240	0.1057	0.0006	0.0298	0.0003	0.0077	0.0002
End-Cap	240 - 280	0.1017	0.0008	0.0313	0.0004	0.0068	0.0002
End-Cap	280 - 320	0.096	0.001	0.0296	0.0006	0.0070	0.0003
End-Cap	320 - 400	0.089	0.001	0.0312	0.0007	0.0068	0.0003
End-Cap	400 - 900	0.074	0.002	0.029	0.001	0.0065	0.0005


Appendix: Correlation Factor for SHERPA

Since the R coefficients shows fluctuasions in the different regions of the $\eta-p_T$ space due to the limited number of events in each region, it seemed more reasonable to use the value calculated over the whole data set

Detector	$p_T^{\gamma} [ext{GeV}]$	R_{MC}	$\mid \sigma \mid R_{MC} \mid$	$\mid R_{MC}^{BARREL} \mid$	$\mid \sigma \mid R_{MC}^{BARREL} \mid$	$R_{MC}^{p_T}$	$\mid \sigma \mid R_{MC}^{p_T} \mid$	R_{MC}^{SB}	$\mid \sigma \mid R_{MC}^{SB} \mid$	Events
	150 - 170					1.41	0.22	1.4	0.25	875.371
	170 - 190					2.00	0.31	1.54	0.31	955.182
	190 - 210					2.65	0.46	3.08	0.59	758.93
Barrel	210 - 240	2.011	0.074	1.090	0.085	1.78	0.28	2.0	0.35	958.943
Darrei	240 - 280	2.011	0.074	1.989	0.085	3.02	0.51	2.41	0.50	758.591
	280 - 320					1.03	0.23	0.93	0.24	541.697
	320 - 400					3.24	0.68	5.2	1.2	712.781
	400 - 900					2.31	0.58	1.75	0.48	538.146
Detector	$p_T^{\gamma} \; [ext{GeV}]$	R_{MC}	σR_{MC}	R_{MC}^{ENDCAP}	σR_{MC}^{ENDCAP}	$R_{MC}^{p_T}$	$\sigma R_{MC}^{p_T}$	R_{MC}^{SB}	σR_{MC}^{SB}	Events
	150 - 170					1.41	0.22	1.52	0.50	258.699
	170 - 190					2.00	0.31	3.024	0.85	347.645
	190 - 210					2.65	0.46	1.42	0.59	225.495
End-Cap	210 - 240	2.011	0.074	2.04	0.15	1.78	0.28	1.18	0.43	248.469
End-Cap	240 - 280	2.011	0.074	2.04	0.15	3.02	0.51	4.4	1.4	229.553
	280 - 320					1.03	0.23	1.39	0.64	144.516
	320 - 400					3.24	0.63	0.72	0.30	145.518
	400 - 900	'			1	2.31	0.58	10.5	7.1	94.8555

Appendix: R prime

- Validity of the MC simulations for 2-Dimensional Sideband Method
 - Necessary to check if the MC simulation is a good approximation of the data
 - The factor R is evaluated over a highly non-isolated region for the data and the MC simulations and the two are compared
 - It is denominated R'

Appendix: R prime PYTHIA

Detector	p_T^{γ} [GeV]	R'_{DATA}	$\sigma R'_{DATA}$	$R_{DATA}^{\prime SB}$	$\sigma R_{DATA}^{\prime SB}$	R'_{PYTHIA}	$\sigma R'_{PYTHIA}$	$R_{PYTHIA}^{\prime SB}$	$\mid \sigma R_{PYTHIA}^{\prime SB} \mid$	Events
	150 - 170			0.9669	0.0033			0.97	0.17	1004.88
Barrel	170 - 190			0.9955	0.0043			1.55	0.28	1101.58
	190 - 210			1.02	0.0054	1.05	0.06	1.24	0.23	928.494
	210 - 240	1.0167	0.0017	1.0491	0.0058			0.93	0.15	1091.63
	240 - 280	1.0107		1.0707	0.0070			0.77	0.12	1138.72
	280 - 320			1.0740	0.0098			0.90	0.16	867.477
	320 - 400			1.152	0.011			0.94	0.17	929.398
	400 - 900			1.145	0.015			0.70	0.13	941.057
	150 - 170			0.9110	0.0048			1.18	0.34	358.521
	170 - 190			0.9293	0.0061			1.74	0.52	338.838
	190 - 210			0.9456	0.0077			1.21	0.36	357.465
End-Cap	210 - 240	1.0167	0.0017	0.9514	0.0082	1.05	0.06	0.77	0.26	347.606
End-Cap	240 - 280	1.0107	0.0017	0.99	0.010	1.05	0.00	1.55	0.42	342.481
	280 - 320			1.018	0.015			0.63	0.22	233.061
	320 - 400			1.044	0.018			5.8	2.2	246.089
	400 - 900			1.040	0.028			1.41	0.59	180.53

Appendix: R prime SHERPA

Detector	p_T^{γ} [GeV]	R'_{DATA}	$\sigma R'_{DATA}$	$R_{DATA}^{\prime SB}$	$\sigma R_{DATA}^{\prime SB}$	R'_{SHERPA}	$\sigma R'_{SHERPA}$	$R_{SHERPA}^{\prime SB}$	$\sigma R_{SHERPA}^{\prime SB}$	Events
	150 - 170		0.0017	0.9669	0.0033			0.95	0.20	875.371
Barrel	170 - 190			0.9955	0.0042	0.822	0.053	0.54	0.10	955.182
	190 - 210			1.0221	0.0054			0.68	0.15	758.93
	210 - 240	1.0167		1.0491	0.0058			0.90	0.17	958.943
Darrei	240 - 280	1.0107		1.0707	0.0070			1.39	0.31	758.591
	280 - 320			1.074	0.0098			0.56	0.13	541.697
	320 - 400			1.152	0.011			0.78	0.18	712.781
	400 - 900			1.145	0.015			0.88	0.20	538.146
	150 - 170			0.9110	0.0048			1.23	0.44	258.699
	170 - 190			0.9293	0.0060			0.91	0.27	347.645
	190 - 210			0.9456	0.0077			0.27	0.12	225.495
End-Cap	210 - 240	1.0167	0.0017	0.9515	0.0082	0.822	0.053	0.99	0.33	248.469
End-Cap	240 - 280	1.0107	0.0017	0.99	0.01	0.022	0.055	1.40	0.57	229.553
	280 - 320			1.018	0.015			1.15	0.54	144.516
	320 - 400			1.044	0.018			1.80	0.75	145.518
	400 - 900			1.040	0.028			2.0	1.2	94.8555