
GPU accelerated programing

Amaro Jr., Rafael A. N. and Igor Abritta
30/09/2020

Universidade Federal de Juiz de Fora (UFJF)
Juiz de Fora, MG

Summary
• Overview of last presentation;

• Solutions tested;

• What has been done so far;

• RAPIDS.

Last presentation
• We are starting to study the possibilities and potential of using GPU

in the trigger processing part;

• A decision on the use of DirectGMA (AMD)/GPUDirect (NVIDIA)
must be made, as it influences the choice of the readout electronics
and computing hardware;

• The code environment (C++,Python,etc) and GPU hardware
should also be chosen but it is not strongly related to the readout
electronics.

Summary
• Overview of last presentation

• Solutions tested

• What’s been done so far

Solutions tested
• C++ implementation of the G-DBSCAN algorithm;

• Python implementation of the G-DBSCAN;

• Python library for GPU Data Science (RAPIDS);

• All of the following work has been done with CUDA in mind, given
that is the technology that we have available.

What has been done so far - C++
• We were not able to do much progress creating a C++

implementation of the G-DBSCAN algorithm ;

• Being new to parallel computing, I’ve decided to take some steps
back and try something that would be faster to do and easier to
adapt to current work;

• We still believe that a C++ implementation would be crucial for
faster results in an online environment.

What has been done so far - Python
• The second approach was to implement the G-DBSCAN in python,

but after some research we’ve decided to look somewhere for an
already made implementation;

• We found RAPIDS:

• RAPIDS is a python library that implements many Data Science
methods in GPU using CUDA;

• One of the already implemented methods is DBSCAN.

• Running on colab during preliminary tests in order to get
experience with CUDA and GPU processing;

• Now for the next steps we’ll move the codebase to GAP01 for
some more robust testing.

• RAPIDS is a good option so far because applying it’s accelerated
DBSCAN method with experiment data is very easy

RAPIDS

RAPIDS results
• Randomly distributed noise

RAPIDS results
• Randomly distributed noise

• With colab the speed
apparently caps at 70x, but
given the right machine
could be even better

RAPIDS results
• Run 2089

• 10 images analyzed

• It was used the default
preprocessing (pedmap,
zero suppression, median
filter and noise reductor);

• And scanning over the
nsigma (from 3 to 1.5) in
order to get different number
of pixels.

• GPU is 3x faster for 30k
pixels

Next steps
• As mentioned, our next step will be moving the codebase to GAP01

for further testing

• Stress test the RAPIDS library with experiment data

