GPU accelerated programing

Amaro Jr., Rafael A. N. and Igor Abritta
30/09/2020

Universidade Federal de Juiz de Fora (UFJF) ‘“ f
Juiz de Fora, MG J

UNIVERSIDADE
Engenharia - UFJF FEDERAL DE Juiz DE FORA




Summary

FEDERAL DE Juiz DE FORA

Overview of last presentation;
e Solutions tested;
« What has been done so far;
 RAPIDS.



Last presentation

FEDERAL DE Juiz DE FORA

We are starting to study the possibilities and potential of using GPU
in the trigger processing part;

A decision on the use of DirectGMA (AMD)/GPUDirect (NVIDIA)
must be made, as it influences the choice of the readout electronics
and computing hardware;

 The code environment (C++,Python,etc) and GPU hardware
should also be chosen but it is not strongly related to the readout
electronics.



Summary

FEDERAL DE Juiz DE FORA

Overview of last presentation
« Solutions tested

« \What's been done so far



Solutions tested

C++ implementation of the G-DBSCAN algorithm;
« Python implementation of the G-DBSCAN,;
» Python library for GPU Data Science (RAPIDS);

« All of the following work has been done with CUDA in mind, given
that is the technology that we have available.

FEDERAL DE Juiz DE FORA



What has been done so far - C++

FEDERAL DE Juiz DE FORA

We were not able to do much progress creating a C++
implementation of the G-DBSCAN algorithm ;

« Being new to parallel computing, I've decided to take some steps
back and try something that would be faster to do and easier to
adapt to current work;

*  We still believe that a C++ implementation would be crucial for
faster results in an online environment.



What has been done so far - Python

FEDERAL DE Juiz DE FORA

The second approach was to implement the G-DBSCAN in python,
but after some research we’ve decided to look somewhere for an
already made implementation;

We found RAPIDS:

 RAPIDS is a python library that implements many Data Science
methods in GPU using CUDA,;

* One of the already implemented methods is DBSCAN.



RAPIDS

Running on colab during preliminary tests in order to get
experience with CUDA and GPU processing;

FEDERAL DE Juiz DE FORA

* Now for the next steps we’ll move the codebase to GAPO1 for
some more robust testing.

 RAPIDS is a good option so far because applying it's accelerated
DBSCAN method with experiment data is very easy



s
RAPIDS results af

UNIVERSIDADE
_Running DBSCAN with GPU and CPU for random points

FEDERAL DE Juiz DE FORA
- Randomly distributed noise
102___+_ GPU
- —— CPU

101F
100 f

10_1:—

Processing time [s]

C 1 l | 1 1 | 1 1 | 1 1 1 | 1 1 |
0 200 400 600 800 1000
Number of pixels x10.000 [px]

1




s
RAPIDS results

How much faster is running DBSCAN on GPU over CPU

~
o

(o)}
o

Speedup factor [CPU/GPU]
w FN w
o o o

N
o

=
()

- —e— GPU

—
°

1 1 1 l 1
0 200

1 l 1 1 1 l 1 1 1 I 1 1 1 l
400 600 800 1000
Number of pixels x10.000 [px]

Aﬁjf

UNIVERSIDADE
AL DE,Juiz pe FORA

Randomly distributed noise

With colab the speed
apparently caps at 70x, but
given the right machine
could be even better



RAPIDS results

Processing time [s]
© © © © ©
N w e w (@)

o
]

o
o

Running DBSCAN on CYGNO images

—— GPU
—4— CPU

1 1 l 1 1
20000

1 1 ' 1 1 1 1 l 1 1
30000 40000

Number of pixels [px]

Aﬁjf

UNIVERSIDADE

Run 2089 FEDERAL DE Juiz DE FORA
10 images analyzed

It was used the default
preprocessing (pedmap,
zero suppression, median
filter and noise reductor);

And scanning over the
nsigma (from 3 to 1.5) in
order to get different number
of pixels.

GPU is 3x faster for 30k
pixels



Next steps

FEDERAL DE Juiz DE FORA

As mentioned, our next step will be moving the codebase to GAPO1
for further testing

« Stress test the RAPIDS library with experiment data



