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Last presentation
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We are starting to study the possibilities and potential of using GPU
in the trigger processing part;

A decision on the use of DirectGMA (AMD)/GPUDirect (NVIDIA)
must be made, as it influences the choice of the readout electronics
and computing hardware;

 The code environment (C++,Python,etc) and GPU hardware
should also be chosen but it is not strongly related to the readout
electronics.
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Solutions tested

C++ implementation of the G-DBSCAN algorithm;
« Python implementation of the G-DBSCAN,;
» Python library for GPU Data Science (RAPIDS);

« All of the following work has been done with CUDA in mind, given
that is the technology that we have available.
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What has been done so far - C++
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We were not able to do much progress creating a C++
implementation of the G-DBSCAN algorithm ;

« Being new to parallel computing, I've decided to take some steps
back and try something that would be faster to do and easier to
adapt to current work;

*  We still believe that a C++ implementation would be crucial for
faster results in an online environment.



What has been done so far - Python
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The second approach was to implement the G-DBSCAN in python,
but after some research we’ve decided to look somewhere for an
already made implementation;

We found RAPIDS:

 RAPIDS is a python library that implements many Data Science
methods in GPU using CUDA,;

* One of the already implemented methods is DBSCAN.



RAPIDS

Running on colab during preliminary tests in order to get
experience with CUDA and GPU processing;
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* Now for the next steps we’ll move the codebase to GAPO1 for
some more robust testing.

 RAPIDS is a good option so far because applying it's accelerated
DBSCAN method with experiment data is very easy
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UNIVERSIDADE
_Running DBSCAN with GPU and CPU for random points

FEDERAL DE Juiz DE FORA
- Randomly distributed noise
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RAPIDS results

How much faster is running DBSCAN on GPU over CPU
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Randomly distributed noise

With colab the speed
apparently caps at 70x, but
given the right machine
could be even better



RAPIDS results
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Running DBSCAN on CYGNO images
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10 images analyzed

It was used the default
preprocessing (pedmap,
zero suppression, median
filter and noise reductor);

And scanning over the
nsigma (from 3 to 1.5) in
order to get different number
of pixels.

GPU is 3x faster for 30k
pixels



Next steps
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As mentioned, our next step will be moving the codebase to GAPO1
for further testing

« Stress test the RAPIDS library with experiment data



