

Performance-oriented workflow
for Muon Collider simulations

29.09.2020

Using Marlin wisely

N. Bartosik
INFN Torino

TORINO

Nazar Bartosik Double-layer BIB suppression 2

Current simulation chain

We usually perform simulation in 2 big steps: ddsim and Marlin

1. Simulation geometry GEANT4 SimHits> > > SIM_sig.slcio

MC file

geometry GEANT4 SimHits> > > SIM_bib_1.slcio

BIB file
parallel jobs

SIM_bib_2.slcio
SIM_bib_8.slcio

2. Reconstruction digitization<

Track reco.

Jet clustering

RecHits

PFlow obj.

Particle Flow

REC_all.slcio

Overlay

 ✔ good

 ⨉ not so good

Nazar Bartosik Double-layer BIB suppression 3

1. Run the minimum: split the chain
We are at an early stage → repeating the same process with different parameters

Your main Marlin job should include the bare minimum
of processors relevant for what you're studying

 ↳ all the input should come from static files,
 not from processors rerunning every time

Imagine running 10
variations of Track
reconstruction

SIM_sig.slcio

SIM_bib_1.slcio
SIM_bib_2.slcio
SIM_bib_8.slcio

digitization<

Track reco.

RecHits

Tracks REC_trk.slcio

Overlay

> >

SIM_sig.slcio

SIM_bib_1.slcio
SIM_bib_2.slcio
SIM_bib_8.slcio

digitization<

Track reco.

RecHits

Tracks REC_trk.slcio

Overlay

> >

10 ⨉

<REC_hits.slcio

1 ⨉this saves a lot of
RAM and CPU time

REC_hits.slcio >10 ⨉

Nazar Bartosik Double-layer BIB suppression 4

2. Mind the collections: disable unused ones
Currently we work on isolated tasks → only limited sets of collections needed

1. Overlay: our BIB has way too many particles & hits to merge everything CLIC way

• exactly the reason why we use the modified Overlay processor

huge reduction of RAM usage
[true] 46 GB → 5 GB [false]

← by not merging 380M BIB MCParticles

less CPU and RAM usage
← by not merging irrelevant collections

only collections present in the list are
merged into the event

2. Output: only write out collections that
are actually needed
• saves CPU time and disk space →

https://github.com/MuonColliderSoft/Overlay/tree/mc
https://github.com/MuonColliderSoft/Overlay/tree/mc

Nazar Bartosik Double-layer BIB suppression 5

3. Overlay optimisation: filter only once
Overlay processor performs a very simple task for each collection:

element

element

element

. . .

Loop over elements Check time Add to the event Collection
if passed selection

element

element

element

Total numbers of input elements are huge

BIB from 1 bunch crossing distributed across
2993 events stored in 16 files
 ↳ reading + filtering takes a lot of I/O & CPU
 to produce the same set of SimHits for
 merging into the event every single time
Only a subset of SimHits passing the
time selection is actually used for digitization
 ↳ use BIB files with trimmed collections

-6σt 6σt

ECalBarrel 13743866
ECalEndcap 3360322
HCalBarrel 16355265
HCalEndcap 9090167
HCalRing 1001555

InnerTrackerBarrel 2423422
InnerTrackerEndcap 865026
OuterTrackerBarrel 2231321
OuterTrackerEndcap 882683

VertexBarrel 2756752
VertexEndcap 2042850

Nazar Bartosik Double-layer BIB suppression 6

3. Overlay optimisation: trimmed BIB
Using a single file with trimmed collections of BIB SimHits

greatly improves Overlay performance

dummy.slcio

SIM_bib_1.slcio

SIM_bib_8.slcio Overlay

. . .

1 event with
a photon pT=0

SIM_bib_trimmed.slcio

SIM_sig.slciodigitization<RecHits

Overlay

<REC_hits.slcio

246 MB
 SimTrackerHit only

500 seconds

7 seconds

The same approach should be
beneficial for Calorimeter-only

 SimHit collections

I can try to produce 1 file with all
trimmed SimHit collections

• hopefully not hitting LCIO
format limitations

Collection name All hits Trimmed %
InnerTrackerBarrel 2423422 1590802 66%
InnerTrackerEndcap 865026 476061 55%
OuterTrackerBarrel 2231321 1140907 51%
OuterTrackerEndcap 882683 430440 49%

VertexBarrel 2756752 626394 23%
VertexEndcap 2042850 866938 42%

