

Performance-oriented workflow for Muon Collider simulations

Using Marlin wisely

N. Bartosik

INFN Torino

Current simulation chain

We usually perform simulation in 2 big steps: ddsim and Marlin

1. Simulation **SimHits** SIM_sig.slcio geometry **GEANT4** ✓ good MC file **GEANT4 SimHits** geometry bib 1.slcio SIM_bib_8.slcio **BIB** file parallel jobs Overlay 2. Reconstruction RecHits digitization × not so good Track reco. **Particle Flow** Jet clustering PFlow obj. **REC_all.slcio**

I. Run the minimum: split the chain

We are at an early stage \rightarrow repeating the same process with different parameters

Your main Marlin job should include the bare minimum of processors relevant for what you're studying SIM bib 1 slcio 10 X CIM hih 2 daia SIM_bib_8.slcio → all the input should come from static files, not from processors rerunning every time **Overlay** Imagine running 10 RecHits digitization SIM_sig.slcio variations of Track REC_trk.slcio Track reco. **Tracks** reconstruction SIM hib 1 slcio this saves a lot of 1 X CIM hih 2 dais **RAM** and **CPU** time SIM_bib_8.slcio **Overlay** REC_hits.slcio RecHits digitization SIM_sig.slcio REC_hits.slcio REC_trk.slcio **Tracks** Track reco.

2. Mind the collections: disable unused ones

Currently we work on isolated tasks \rightarrow only limited sets of collections needed

- 1. Overlay: our BIB has way too many particles & hits to merge everything CLIC way
 - exactly the reason why we use the modified <u>Overlay</u> processor

```
<group name="0verlay">
 <parameter name="MCParticleCollectionName" type="string">MCParticle </par
 <parameter name="MCPhysicsParticleCollectionName" type="string"> MCPhysics
 <parameter name="Delta_t" type="float" value="1"/>
 <parameter name="NBunchtrain" type="int" value="1"/>
 <!--Whether MCParticle collections should be merged (slow with BIB) -->
 <parameter name="MergeMCParticles" type="bool" value="false"/>
 <parameter name="IntegrationTimeMin" type="float" value="-0.25"/>
 <parameter name="Collection_IntegrationTimes" type="StringVec" >
   VertexBarrelCollection
   VertexEndcapCollection
   InnerTrackerBarrelCollection 0.6
   InnerTrackerEndcapCollection 0.6
   OuterTrackerBarrelCollection 0.6
   OuterTrackerEndcapCollection 0.6
  </parameter>
```

huge reduction of RAM usage [true] **46 GB** → **5 GB** [false]

← by not merging 380M BIB MCParticles

less CPU and RAM usage

← by not merging irrelevant collections
 only collections present in the list are
 merged into the event

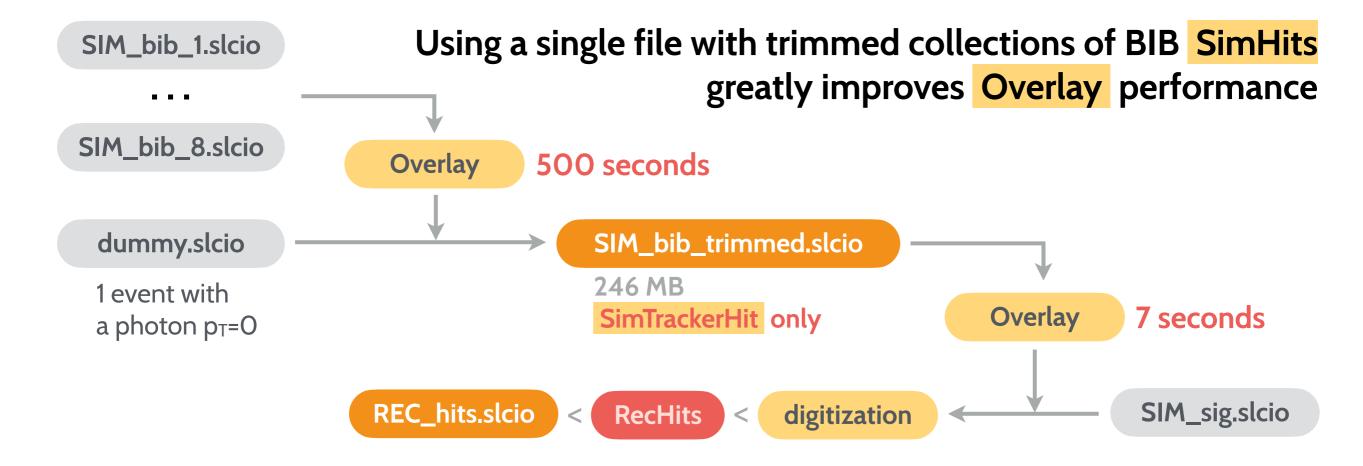
- **2. Output:** only write out collections that are actually needed
 - saves CPU time and disk space →

3. Overlay optimisation: filter only once

Overlay processor performs a very simple task for each collection:

13743866	ECalBarrel
3360322	ECalEndcap
16355265	HCalBarrel
9090167	HCalEndcap
1001555	HCalRing
2423422	InnerTrackerBarrel
865026	InnerTrackerEndcap
2231321	OuterTrackerBarrel
882683	OuterTrackerEndcap
2756752	VertexBarrel
2042850	VertexEndcap

Total numbers of input elements are huge


BIB from 1 bunch crossing distributed across 2993 events stored in 16 files

→ reading + filtering takes a lot of I/O & CPU
to produce the same set of SimHits for
merging into the event every single time

Only a subset of SimHits passing the time selection is actually used for digitization

use BIB files with trimmed collections

3. Overlay optimisation: trimmed BIB

Collection name	All hits	Trimmed	%
InnerTrackerBarrel	2423422	1590802	66%
InnerTrackerEndcap	865026	476061	55%
OuterTrackerBarrel	2231321	1140907	51 %
OuterTrackerEndcap	882683	430440	49%
VertexBarrel	2756752	626394	23%
VertexEndcap	2042850	866938	42%

The same approach should be beneficial for Calorimeter-only SimHit collections

I can try to produce 1 file with all trimmed SimHit collections

 hopefully not hitting LCIO format limitations