

WP4 activities

Nicola Neri

Nicola Neri on behalf of WP4

29 Settembre 2020

Activities

- Tracking on FPGA:
 - clustering, stub maker on FPGA 1
 - tracking on FPGA 2
- Simulations
 - optimisation of the architecture
 - performance of 4D tracking on FPGA
 - Integration with VELO
 - stub based tracking optimal geometry
 - costs

VELO data format

- Readout type: continuous, triggerless, binary
- Timing resolution: 25 ns
- Data format: 30bit. 9-bit timestamp defines maximum latency

- Pixel data organised in SuperPixels, groups of 2x4 pixels (30% reduction in data size)
- Data sent out of time —> Timestamp stored in SuperPixel data packer

Clock distribution R&D in CMS

- MIP timing layer, Barrel timing layer, Endcap timing layer require precise reference clock signal for timing measurements
- Test with new ipGBT chip

Clock distribution characterisation studies

The link-to-link jitter of

e-clock at 40 MHz : 4 ps RMS

e-clock at 160 MHz: 10.6 ps RMS

Stable clock with 4-10 ps jitter can be distributed to FE board

Timespot data format

- Readout type: continuous, triggerless, binary
- Timing resolution: 30 ps
- Data format: ~40bit. 9-bit timestamp defines maximum latency + 10-bit TDC, defines hit time wrt reference time

- ▶ 10 bit to divide 1 ns, time of *pp* collision, into 1 ps intervals and determine the time of the hit with respect to the time of collision
- Assumption: ASIC has a 10 bit TDC and a reference clock for collisions is provided by LHC

Estimated costs for VELO tracking

Working hypotheses:

- clustering and stub construction can be done on DAQ FPGA
- 100.000 engines are needed for track reconstruction with 1.000 engines per FPGA
- cost of each FPGA 10.000 Euro
- 30% of the cost is for switch ports, infrastructures and spares
- ▶ Total cost: about 1.300.000 Euro

Fig. 1. Xilinx FPGA attributes relative to 1988. Capacity is logic cell count. Speed is same-function performance in programmable fabric. Price is per logic cell. Power is per logic cell. Price and power are scaled up by $10\,000\times$. Data: Xilinx published data.

Cost expected to reduce of 1 order of magnitude in 10 years

Clustering

- Time info not needed for clustering (Serena, Angelo)
- Solution for 2D VELO clustering in FPGA has been already proposed
- 2/3 of clusters contained in one SP. Very fast to reconstruct with precalculated position stored in LUT
- Clusters with neighbour SP require a parallel cluster finder

F. Lazzari et al., J.Phys.Conf.Ser. 1525 (2020) 1, 012044

Stub maker

- Fundamental modules implemented and tested on FPGA (Marco)
- Grid of stub makers and test with simulated data in progress

