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1 – OUTLINE

• The order of the Roberge-Weiss endpoint and the QCD phase dia -

gram (based on M. D’E. and F. Sanfilippo, Phys. Rev. D 80, 111501 (20 09) arXiv:0909.0254)

• Analytic continuation of the critical line

(P. Cea, L. Cosmai, M. D’E., C. Manneschi and A. Papa, Phys. Re v. D 80, 034501

(2009) arXiv:0905.1292 and work in progress)



2 – Introduction: analytic continuation and the Roberge-We iss line

Knowledge about the QCD phase diagram is important from a pur ely theoretical and

from a phenomenological point of view, but we are still lacki ng a complete descrip-

tion of it.

The problem is of non-perturbative nature and lattice QCD si mulations are the ideal

tool to approach it. However, getting definite answer is non- trivial already when con-

sidering the simple finite temperature theory (i.e. without chemical potentials).

We know that the system passes through a (pseudo)critical te mperature Tc at which

both confinement and chiral symmetry breaking disappear.

Whether a simple rapid change (crossover) or a real phase tra nsition takes place, and

which is the order of the transition in the latter case, are no n-trivial questions.



The QCD thermal partition function, e.g. given in the lattic e path integral represen-

tation, has exact symmetries, which are spontaneously brok en at Tc, only in the

quenched or in the chiral limit.

Z(T ) ≡

∫

DUe−SG[U ] det M [U ]

M [µ]i,j = amδi,j +
1

2

4
∑

ν=1

ηi,ν

(

Ui,νδi,j−ν̂ − U †
i−ν̂,νδi,j+ν̂

)

U are gauge link variables, M is the fermion matrix,

SG is the pure gauge (e.g. plaquette) action, SG = β
∑

�
(1 − ReTr�/Nc);

T = 1/(Nta(β)). Boundary conditions are periodic (antiperiodic) for boso ns (fermions).

• infinite quark masses (quenched limit, no fermion determina nt) → center symme-

try (i.e. twist of temporal boundary conditions by a center e lement). Weak first

order transition. Order parameter: Polyakov loop.

• zero quark masses (chiral limit) → chiral symmetry. Order parameter: chiral con-

densate. Universality class: depend on the number of light fl avors.



In the case of finite quark masses no exact symmetry is known. C hiral symmetry is

broken explicitly and the presence of the fermion determina nt in breaks Z3 center

symmetry explicitly. Consider the loop expansion of det M

M [U ] = mId + D[U ]

where D[U ] involves terms hopping from one site to the other. We can writ e formally:

det M = eTr ln M = exp (Tr ln (m + D[U ])) ∝ exp

(

Tr

(

1

m
D −

1

2m2
D2 + . . .

))

only traces over closed paths are non-zero. That includes Po lyakov loops, which are

not invariant under Z3.

That’s like adding a magnetic field proportional to some powe r of 1/m in a three state

3D Potts model. Since the transition is first order at m = ∞, we expect the first order

transition to persist for relatively large masses.

In general the transition and its order is flavor spectrum dep endent.
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This is the commonly accepted sce-

nario for 2+1 flavors (Columbia plot).

The regions of low masses and high

quark masses are first order and

are separated from an intermediate

crossover region by second order

lines. The physical point is presently

believed to be in the crossover region.

A still unsettled issue regards the chiral limit of Nf = 2 (upper-left corner): second

order in the O(4) universality class or first order? (G. Cossu, M. D’E., A. Di Giacomo, C. Pica

2005, 2007):

Data are not consistent with O(4), they are consistent with fi rst order, but a clear sig-

nal of phase coexistence still not visible on the largest ava ilable lattices ( 483 × 4).

Very weak first order or very small scaling region around the c hiral point?
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The phase structure is much richer if we introduce new phenom enologically relevant

parameters, like a finite baryon chemical potential µ.

If the transition at µ = 0 is a crossover, a critical endpoint is possible in the phase

diagram for a first order line starting in the low T , high µ region of the phase diagram.

There is a tremendous hunt, both at a theoretical and experim ental level, for this

possible endpoint.



Unfortunately, exploring the phase diagram of QCD at finite T and finite baryon chem-

ical potential µ by lattice QCD simulations is highly non-trivial because of the sign

problem. The fermion determinant appearing in the expressi on for the full QCD parti-

tion function

Z(T ) ≡

∫

DUe−SG[U ] det M [U ]

is a complex quantity if µ 6= 0. That makes usual Monte-Carlo importance sampling

not feasible.

There are various, possible partial solutions to this probl em, one of them is using a

purely imaginary chemical potential.



The sign problem disappears for imaginary values of the chem ical potential

Z(T, µ2) ≡

∫

DUe−SG det M [µ] −→

∫

DUe−SG det M [µ = iµI ]

M [µ]i,j = amδi,j+
1

2

3
∑

ν=1

ηi,ν

(

Ui,νδi,j−ν̂ − U †
i−ν̂,νδi,j+ν̂

)

+ηi,4

(

eaµUi,4δi,j−4̂
− e−aµU †

i−4̂,4
δi,j+4̂

)

M [iµI ]i,j = amδi,j+
1

2

3
∑

ν=1

ηi,ν

(

Ui,νδi,j−ν̂ − U †
i−ν̂,νδi,j+ν̂

)

+ηi,4

(

eiaµI Ui,4δi,j−4̂
− e−iaµI U †

i−4̂,4
δi,j+4̂

)

An imaginary µ = iµI is like adding a background U(1) field in the Euclidean tem-

poral direction. The fermion determinant is real, numerica l simulations are feasible

again.

The phase diagram in the T -µI plane can explored systematically.

What do we learn from doing that?



Sketch of the T -µI phase diagram

• an imaginary chemical potential is equivalent to a rotation of fermion boundary

conditions in temporal direction by an angle θq = NtaµI = µI/T

• an amount 2πk/Nc of this rotation, with k integer, can be cancelled by a center

transformation. Hence the partition function has periodic ity 2π/Nc in θq (Roberge

and Weiss)

• the periodicity is smoothly realized at low T . Instead in the high T regime first

order phase transitions occur for θq = (2k + 1)π/Nc at which the Polyakov loop

〈L〉 suddenly jumps from one center sector to the other (RW lines) . One may think

of θq as a rotation angle for the external field of the 3 state 3D Pott s model.

zero chemical potential non zero imaginary chemical potential       
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µΙ Tπ //3 π

• The RW line must end at some endpoint TRW

• The diagram is completed by the analytic continuation of the physical deconfine-

ment/chiral transition line, which repeats periodically o ver the plane. Numerical

results show that such line touches the RW line right on its en dpoint.
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One way to exploit information gathered at imaginary chemic al potentials is to per-

form ANALYTIC CONTINUATION ≡ a given ansatz for the dependence of physics on

µ2 can be continued to µ2 < 0 and checked (fitted) against numerical data at imagi-

nary chemical potentials

Predictivity restricted by domains of analyticity

Systematics affected by the choice of the ansatz.



Determining the location of the deconfinement line may be use ful to get part of the

physical line by analytic continuation (see later)
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P. Giudice and A. Papa, Phys. Rev. D 69, 094509 (2004)

P. Cea, L. Cosmai, M. D’Elia and A. Papa, Phys. Rev. D 77, 05150 1 (2008); Phys. Rev. D 80, 034501

(2009).

Here we are interested in a different question:

What is the order of the RW endpoint?

The issue has been partially addressed in some previous stud ies

de Forcrand and Philipsen for SU(3) Nf = 2(2002), Kouno et al. (2009) in a PNJL model, G. Cortese

for 2 color QCD (2007)
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Along the RW lines the theory possesses an exact Z2 symmetry: the system is in per-

fect equilibrium between two center sectors. The symmetry i s spontaneously broken

for T > TRW, where a phase transition in T takes place.

Such symmetry is better appreciated at θq = π (periodic b.c.), where it corresponds

to charge conjugation. The RW endpoint is equivalent to the fi nite spatial size tran-

sition at which charge symmetry is spontaneously broken whi ch has been studied in

other contexts T. DeGrand, R. Hoffmann and J. Najjar, JHEP 0801, 032 (2008); B. Lucini, A. Patella

and C. Pica, Phys. Rev. D 75, 121701 (2007); B. Lucini and A. Pa tella, Phys. Rev. D 79, 125030 (2009)



Two possibilities

• The endpoint is second order.
In this case the universality class is Ising 3d by symmetry, t he corresponding crit-

ical behaviour may in principle influence physics at θq = 0 M. D’Elia, F. Di Renzo and

M.P. Lombardo, Phys. Rev. D 76, 114509 (2007); H. Kouno, Y. Sa kai, K. Kashiwa and M. Yahiro,

arXiv:0904.0925 [hep-ph].

• The endpoint is first order.
In this case it is actually a triple point with two further firs t order lines departing

from it. Those are naturally identified with (part of) the ana lytic continuation of the

physical critical line. More interesting consequences fol lows ...



For Nc = 3, the first order hypothesis is surely realized close enough t o the quenched

limit, amq → ∞, where θq becomes completely irrelevant and the RW endpoint coin-

cides with the usual quenched deconfining transition, TRW = Tc

q

T

θ



3 – NUMERICAL RESULTS

We have investigated QCD with two degenerate flavors, standa rd plaquette action,

standard staggered fermion formulation (square root), RHM C algorithm.

Two values of the bare quark mass: amq = 0.075 and amq = 0.025

Lattices L3
s × Lt with Lt = 4 and Ls = 8, 12, 16, 20, 32.

We have worked at fixed θq = π and the temperature T = 1/(Lta(β, mq)) has been

changed by tuning the inverse gauge coupling β.

Collected statistics are of the order of 50− 100K trajectories for the β values closest

to the critical point.



At θq = π, the broken symmetry is charge conjugation and the imaginar y part of the

Polyakov loop is a possible order parameter.

Im(L) → magnetization (θq − π) → magnetic field

We study its susceptibility

χ ≡ L3
s (〈Im(L)2〉 − 〈|Im(L)|〉2) (1)

its expected finite size scaling behaviour is the following

χ = Lγ/ν
s φ(τL1/ν

s ) =⇒ χ/Lγ/ν
s = φ(τL1/ν

s ) (2)

where τ ≡ (T − TRW)/TRW ∼ (β − βRW),

Table of relevant critical indexes

ν γ

Ising 3d 0.63 1.24

1stOrder 1/3 1
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reweighted plaquette distribution at the critical couplin g

0.49 0.5 0.51 0.52 0.53 0.54
0

50

100

150 L
S
 = 12

L
S
 = 16

L
S
 = 20

L
S
 = 32

0.51 0.52 0.53 0.54
0

50

100

150

200

L
S
 = 12

L
S
 = 16

L
S
 = 20

L
S
 = 32

amq = 0.025 amq = 0.075

Double peak distributions are visible at the lower quark mas s, but not at the higher

quark mass



The development of metastabilities as Ls → ∞ for the lower quark mass is also vis-

ible from Monte-Carlo histories of the plaquette:

0 10000 20000 30000 40000
RHMC trajectories
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L
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Both the scaling of the order parameter susceptibility and t he search for double peak

distribution lead to the following conclusion:

The transition is first order at the lower quark mass am = 0.025. It is weaker and

likely second order at the higher quark mass amq = 0.075. Since at amq = ∞ the

transition must be first order again, the following scenario is likely:

o

T
RW

m q0 o

Since for amq = 0.025 the pion is already quite heavy, the first order chiral region

includes physical quark masses.



o

T
RW

m q0 o

The right, high mass region of this phase diagram is the exact mapping of what hap-

pens for a 3-state 3D Potts model in a negative external field, where the residual Z2

symmetry breaks spontaneously (C. Bonati, M. D’E., in progress) .

The left, low mass region comes unexpected: the strengtheni ng of the transition for

low masses is likely due to an interplay with chiral degrees o f freedom which should

be better understood.

We are currently trying to put this scenario on a firmer basis b y investigating more

quark masses, preliminary results are positive



Further preliminary evidence collected in favour of the abo ve scenario
(M. D’E., F. Sanfilippo, in progress)
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The first order transition at am = 0.010 is sensibly stronger than at am = 0.025.
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Challa-Landau-Binder cumulant of the spatial plaquette

this is also visible from the infinite volume limit of the Bind er-Challa-Landau cumulant

(at the transition temperature) of the plaquette

1
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1 −
〈P 4〉

〈P 2〉2

)

whose non-zero value signals a first order (it is proportiona l to the gap squared)
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Monte-Carlo histories show that chiral dynamics are strict ly entangled with Polyakov

loop dynamics: at the RW endpoint also chiral symmetry resto ration takes place.



4 – Discussion and speculations

When the RW endpoint is first order, what is the fate of the depa rting first order line?

2

T

µ 2

T

µ
1) It could have a 2nd order endpoint at µ2 < 0: its critical behaviour could strongly

influence µ2 = 0 physics above Tc, which is known to be highly non-trivial.

2) It could cross the µ2 = 0 axis, leading to first order at µ2 = 0.

One expects that the extension of the departing first order li ne depends on the strength

of the starting RW endpoint. The second possibility is surely verified in the quenched

limit, it could be likely again in the chiral limit where the R W endpoint gets stronger.

The answer is of course strictly interrelated to the solutio n of the puzzle about the

Nf = 2 critical behaviour at mq = 0 mentioned before.



A pure speculation ...

Suppose a similar scenario happens for different number of fl avors (i.e. RW endpoint

weakens and gets stronger again when decreasing the quark ma sses)
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What if the first order regions in the Columbia plot are intere sections with the first

order line (hyper-surface) departing from the RW endpoint?

This is true for the quenched corner, could be true also for th e chiral region.



Consider the Nf = 3 case: at µ = 0, the transition is first order for small or large m,

with two critical masses mc and m′

c delimiting an intermediate crossover region

line of QCD critical endpoints?

2

chiral transition surface

RW transition surface

m’c

mc

m

µ

T

Tc

TRW

We conjecture that, in the T -µ2-m diagram, a first order surface departs from the line

of RW endpoints and extends enough to reach µ2 = 0 only for m < mc or m > m′

c.

In this scenario the QCD critical endpoint, if it exists, is n ot related to the physics of

the chiral critical region, but instead to high µ, low T physics.



Is this a reasonable conjecture?

At least for the µ2 < 0 side, future numerical studies can completely clarify that .

Moreover, it is already supported by the recent results from Ph. de Forcrand and O.

Philipsen:

the chiral critical mass is a decreasing function of µ2

  QCD critical point DISAPPEARED

crossover 1rst
0

∞

Real world

X

Heavy quarks

mu,d
ms

µ

From P. de Forcrand and O. Philipsen, JHEP 0811, 012 (2008)



5 – CONCLUSIONS about the RW endpoint

• For Nf = 2 QCD, standard staggered and plaquette action, Lt = 4, the RW

endpoint is first order for low quark masses (including physi cal ones), as in the

quenched limit.

That should be checked by further studies going closer to the continuum limit.

• The first order line departing from the RW endpoint closest to the µ = 0 axis

could reach the axis or get very close to it. Therefore we coul d have a critical

endpoint influencing Quark-Gluon Plasma physics, which wou ld not be related to

the traditional critical endpoint of the phase diagram.

Future studies should investigate the position and the prop erties of this possible

critical endpoint.

• One can make more speculative conjectures starting from tha t, which can be

checked by systematic studies of the phase diagram in the T -µI plane and for

different number of flavors.



6 – Analytic continuation of the critical line

Are we able to correctly predict Tc(µB) by analytic continuation?

Careful checks of possible systematics in analytic continu ation can be performed in

theories which are free of the sign problem. An example is QCD with two colors:

the fermion determinant is always real since the SU(2) gauge group is real.

We have considered the continuation of the critical line in SU(2) with 8 flavors, stan-

dard staggered fermions, am = 0.07, Ls = 16 and Lt = 4, standard HMC algorithm.

P. Cea, L. Cosmai, M. D’E., A. Papa, PRD 77, 051501(R) (2008)

Location of pseudocritical couplings performed by looking at susceptibility peaks

1.45 1.5 1.55 1.6
β

0

0.5

1

1.5

ch
ira

l s
us

ce
pt

ib
ilit

y

(aµ)
2
= - 0.1225

1.2 1.3 1.4 1.5
β

0

0.5

1

1.5

ch
ira

l s
us

ce
pt

ib
ilit

y

(aµ)
2
= 0.0625



-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
(aµ)2

1.2

1.3

1.4

1.5

1.6

βc

A+B(aµ)
2
,    µmax=0

from the chiral condensate

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
(aµ)

2

1.2

1.3

1.4

1.5

1.6

βc

global fit

from the chiral condensate

Data at µ2 < 0 cannot predict terms beyond the linear one in µ2, βc(µ) = A + Bµ2

A = 1.4091(17), B = −1.095(15), χ̃2 = 0.27 but that fails to reproduce data at real µ.

But a sixth order polynomial, βc(µ) = A + Bµ2 + Cµ4 + Dµ6, nicely fits all data!

A = 1.4088(99), B = −1.230(25), C = −3.77(25)D = −22.7(3.6), χ̃2 = 1.0

Analyticity at µ2 = 0 not contradicted, but analytic continuation not predictiv e enough!

Suppressed, hardly visible contributions ( Cµ4 + Dµ6 in our case) becoming impor-

tant in different regions are a typical problem of analytic c ontinuation.



Similar problems could apply to real QCD as well: non-linear terms in µ2 in the critical

line could be missed by analytic continuation.

It is worth checking that in sign problem free theories which are closer to QCD: we

have investigated QCD in presence of a finite isospin chemica l potential:

P. Cea, L. Cosmai, M. D’E., C. Manneschi, A. Papa, Phys. Rev. D 80:034501 (2009)

Z(T, µ,−µ) ≡

∫

DUe−SG det M [µ] det M [−µ] =

∫

DUe−SG | detM [µ]|2

because of det M [−µ] = detM [µ]∗

We have considered QCD with 8 flavors (4+4), standard stagger ed fermions, am =

0.1. The transition at µ2 = 0 is strong first order in this case, and remains so also at

µ2 6= 0.

Simulations have been done on a relatively small lattice ( 83 × 4) to avoid too long

tunneling times. Critical couplings βc(µ
2) have been determined by looking at double

peak distributions around the transition.
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We show as an example how we determine the transition locatio n for µ/(πT ) =

i 0.30.

A rough idea about βc is obtained by looking at the behaviour of the observables
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βc is then obtained by looking at double peak distributions (Re (Polyakov) is shown),

which taken over 5 − 10 · 104 trajectories (about 10-20 tunneling events at βc)

we estimate βc = 4.750(1) in this case

The computational problem in this case is to collect huge sta tistics in order to cor-

rectly sample both phase around the transition and get an hig h accuracy determina-

tion of Tc = 1
Nta(βc,mq)

.
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A polynomial fit βc(µ) = βc(0) + Bµ2 + Cµ4 + Dµ6 leads to good predictivity,

if the linear term is fixed apriori by looking at a restricted r egion of small chemical

potentials.

LESSON: fix linear term by simulations at small chemical pote ntials, or by other

methods (reweighting or Taylor expansion), then analytic c ontinuation is predictive

enough to correctly reproduce non-linear terms.
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Good predictivity is also obtained by fitting directly the de pendence of T (µ)/Tc by

suitable functions

Tc(µ)

Tc(0)
=

{

A + (1 − A)
[

cos
(

µ
T

)]B
, µ2 ≤ 0

A + (1 − A)
[

cosh
(

µ
T

)]B
, µ2 > 0 ,



We are now revisiting existing determinations of the critic al line for QCD at finite

baryon density, which are mostly based on a simple linear ext rapolation in µ2.

P. Cea, L. Cosmai, M. D’E., A. Papa, in progress

We are studying QCD with 4 degenerate flavors at a bare quark ma ss am = 0.05

(M. D’Elia and M.P. Lombardo, Phys. Rev. D 67, 014505 (2003); Phys. Rev. D 70, 074509 (2004))

The transition is first order also in this case.
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Critical couplings determined in the available region, whi ch is smaller than in the

finite isospin case: µ2/T 2 > −(π/3)2 instead of µ2/T 2 > −(π/2)2 as for SU(2) or

SU(3) at finite isospin.
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"physical" fit

Non linear corrections are clearly visible with the small er rors available and must be

included to get reasonable fits. They can be included in diffe rent ways (polynomial,

rational functions (fitting in βc or Tc directly ...). Do they give consistent extrapola-

tions to µ2 > 0?
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The answer is not positive at the present stage but we are stil l fighting with possible

extrapolation methods. The reason of the problems is likely related to the shorter

range of available imaginary chemical potentials
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, cont.
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, cont.
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3
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3
, reweight.

Kratochvila, de Forcrand, 6
3
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Comparison with other determinations at real µ (canonical partition function, reweight-

ing, previous analytic continuations .... thanks to Ph. de F orcrand for the collection)

shows that our extrapolations start to diverge more or less w hen other determina-

tions disagree
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THANK YOU!


