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The Higgs boson

About the Higgs

I Particle in the SM
I Theory of elementary particles and their interactions

I Discovered in 2012 by ATLAS and CMS collaborations

I Responsible for giving mass to all elementary particles
I “Higgs mechanism”

Masses are not predicted by SM ⇒ measure mH

I Higgs properties (σ,BR . . . ) are given as function of its mass
I Compare them with predictions

I mH , mW , mt are related
I TEST SM consistency
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Higgs boson @ LHC

The LHC is a pp collider at CERN

I Operates at 13 TeV

I Higgs production achieved in 4 main ways

I Decays to every SM massive particles
I H → γγ with loop
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I At ATLAS mH is measured with
H → γγ and H → ZZ∗ → 4`
I Great resolution ∼1 GeV
I Low background
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Mass measurement

Latest mass measurement from ATLAS @ 36.1 fb−1

H → γγ mH = 124.93± 0.21(stat)± 0.34(syst) GeV

H → ZZ∗ → 4` mH = 124.79± 0.36(stat)± 0.09(syst) GeV

Combined mH = 124.86± 0.18(stat)± 0.20(syst) GeV

I In the H → γγ channel systematic uncertainty dominates
I Measurement @ 139 fb−1 will be more
I H → ZZ∗ → 4` is almost systematic free ⇒ still competitive

I Systematic uncertainty must be reduced by a factor of 2
I Precision from actual 0.27 % to 0.1 %

Main focus of this thesis
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The ATLAS detector

ATLAS is a general purpose detector aiming to capture the products from pp and
heavy ions collisions at the LHC
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The ATLAS detector
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H → γγ mass analysis

I 2 photons requested in final state

I mγγ ∈ [105, 160]GeV

I Events are classified in different
categories

I Signal Model

I Fit MC signal sample
I Resonant shape ∼125 GeV

I Background Model

I Fit mγγ in data in
[105, 120] ∪ [130, 160] GeV

I Main sources

I QCD γγ continuum
I Jets faking γ

I Systematic Uncertainties

I Generate MC signal variated
sample
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Fit result

Result for Signal and Background Fit in one event category

Signal Fit Background Fit
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Systematic uncertainties

Main contribution from γ energy determination
I EM calorimeter calibration with resonant processes

I No candles X → γγ
I Rely on e calibration

I Series of 69 uncertainties including
I Knowledge of the material before the EM calorimeter
I EM calorimeter calibration
I Effects of e → γ calibration extrapolation
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How to evaluate (each systematic)

I Generate mvar
γγ distribution

I From maps f (pT, η, conv) = σpT

I Generate mγγ distribution
MC samples

I Evaluate

δ =
〈mvar

γγ 〉
〈mγγ〉

− 1
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How to evaluate (each systematic)

I Generate mvar
γγ distribution

I From maps f (pT, η, conv) = σpT

I Generate mγγ distribution
MC samples

I Evaluate

δ =
〈mvar

γγ 〉
〈mγγ〉

− 1
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Likelihood Fit

Statistical strategy is based on the definition of likelihood function

L
(
mH ,θ; nc ,mγγ

)
=

Ncat∏
c=1

P
(
nc |sc

(
mH ,θ

)
+ bc

) nc∏
i=1

fc

(
mi

γγ ,mH ,θ
)
K (θ)
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I Over 100 parameters are included

I Product for each category

I Poissonian term
I nc events observed with sc + bc expected

I Diphoton mass probability density function fc
I Built with Signal and Background Model functions

I K (θ) =
∏

i
1√
2π
e−

θi
2 are a set of gaussian constraints for NPs

I A systematic uncertainty affecting quantity X , enters with a parameter δ in
the likelihood as

X (θi ) = X · r(θi ) = X ·
{

1 + δθi
e
δθi
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Likelihood Fit

Statistical strategy is based on the definition of likelihood function

L
(
mH ,θ; nc ,mγγ

)
=

Ncat∏
c=1

P
(
nc |sc

(
mH ,θ

)
+ bc

) nc∏
i=1

fc

(
mi

γγ ,mH ,θ
)
K (θ)

I Higgs mass mH is the POI
I Value and uncertainty are extracted with likelihood maximisation

I Test Statistic is the PLR

λ(mH) = −2 log

(
L
(
mH , θ̂mH

)
L(m̂H , θ̂)

)

I May be interpreted as change of χ2 wrt minimum

I Performed on an Asimov dataset
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Event Categorisation

Events are classified according to kinematic requirements (pT, η, . . . )

E
V

E
N

T
S

C
a

teg
ories

1 2

3 4

5 6

7 8

9 . . .

I Categories are orthogonal

I Enhance the sensitivity of the analysis

Systematic uncertainties must be reduced
as seen in slide 2

By means

I Performance studied
of the EM calorimeter

I Build a systematic uncertainty
oriented categorisation
I Select events with

low systematic value

I Suitable choice can reduce
the systematic uncertainty

I 4 different categorisation are studied
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Coupling analysis

First categorisation tested is the one used for the 2018 Higgs Coupling analysis

I 29 categories built to target different Higgs boson production modes

Attempt to optimise the uncertainty on coupling categorisation

I Analyse 2 ggH categories

I mvar
γγ/mγγ − 1 distribution, for total systematic variation
I ggH 0J Cen is sharply peaked
I ggH 0J Fwd is broader

I Address a new categorisation according to systematic value

I Higher systematic values are seen in
I Unconverted photons
I Photons at |η| ∼ 1.5

I The division follows
those criteria

I 4 new categories are introduced
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Production mode categorisation

A different approach in categorising events

I Aiming to reduce systematic uncertainty as well

I Based on Higgs production mode

ggHVBFVHt tH

ggHVBFrest

I ggH being the most populated
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Production mode and systematic value categorisation

Natural subdivision of production mode categorisation

I Focus on total systematic uncertainty

I Create 3 subcategories

ggHVBFrest

Total systematic value distribution
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Production mode and systematic value categorisation

Natural subdivision of production mode categorisation
I Focus on total systematic uncertainty
I Create 3 subcategories

ggHVBFrest

Total systematic value distribution
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Results

For every categorisation

I Models are re–built (Signal, Background, Systematics)

I Asimov fit is performed

⇒ extract the expected uncertainty on mH

Categorisation
Uncertainty [MeV]

Total Statistic Systematic

Coupling 298 129 268
Split “ggH 0J FWD” 294 126 266
Production mode 325 155 286
Production mode and systematic 280 152 235

Reduction of the total (systematic) uncertainty by 6 % (12 %)
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Conclusion

I performed an optimisation of the Higgs boson mass analysis

The last ATLAS measurement showed a significant contribution from systematic
uncertainty

I addressed the optimisation of the event category

I Event division according to systematic value

I I noticed a possible improvement wrt the actual categorisation
I Reduction of the systematic uncertainty of 12 %
I Reduction of the total uncertainty of 6 %

Future improvements will include

I Reduction of statistical uncertainty
I Increasing number of categories

I Optimisation of boundaries between them
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Backup
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The Standard Model
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Higgs boson mass

123 124 125 126 127 128
 [GeV]Hm

Total Stat. onlyATLAS
        Total      (Stat. only)

 Run 1ATLAS + CMS  0.21) GeV± 0.24 ( ±125.09 

 CombinedRun 1+2  0.16) GeV± 0.24 ( ±124.97 

 CombinedRun 2  0.18) GeV± 0.27 ( ±124.86 

 CombinedRun 1  0.37) GeV± 0.41 ( ±125.38 

γγ→H Run 1+2  0.19) GeV± 0.35 ( ±125.32 

l4→H Run 1+2  0.30) GeV± 0.30 ( ±124.71 

γγ→H Run 2  0.21) GeV± 0.40 ( ±124.93 

l4→H Run 2  0.36) GeV± 0.37 ( ±124.79 

γγ→H Run 1  0.43) GeV± 0.51 ( ±126.02 

l4→H Run 1  0.52) GeV± 0.52 ( ±124.51 

-1 = 13 TeV, 36.1 fbs: Run 2, -1 = 7-8 TeV, 25 fbs: Run 1
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ggH 0J FWD division

From analysis of the systematic value as a function of kinematic variables
I Converted photons have lower systematic
I Higher systematic within the barrel–endcap EM calorimeter transition

Division proposed

ggH 0J FWDggH 0J FWD CC

ggH 0J FWD UU GR ggH 0J FWD UU BR

ggH 0J FWD UC

ggH 0J FWD CC

I Both
photons
converted

ggH 0J FWD UC

I Only one
photon
converted

ggH 0J FWD UU
GR

I Both photons
unconverted

I Both photons
away of the
transition
region

ggH 0J FWD UU
BR

I Both photons
unconverted

I At least on
photons in the
transition
region

Total systematic, mean and RMS

ggH 0J Fwd ggH 0J Fwd CC ggH 0J Fwd UC ggH 0J Fwd UU GR ggH 0J Fwd BR
0

0.002

0.004

0.006

0.008

0.01

-1 γγ
/m

1u
p γγ

m
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EM calibration

simulation!

data!

J/ψàee Zàllγ#
data-driven scale validation!

calibrated !
e/γ !

energy!

Zàee #
resolution 
smearing !

Zàee #
scale 

calibration!

EM !
cluster!
energy!

training of !
MC-based !

e/γ calibration!

1!

uniformity 
corrections!

4!
longitudinal 
layer inter-
calibration!

2!

MC-based !
e/γ energy!
calibration!

3! 5!

5!

6!
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