Crystals for Muon Collider

Laura Bandiera, Andrea Mazzolari INFN Ferrara

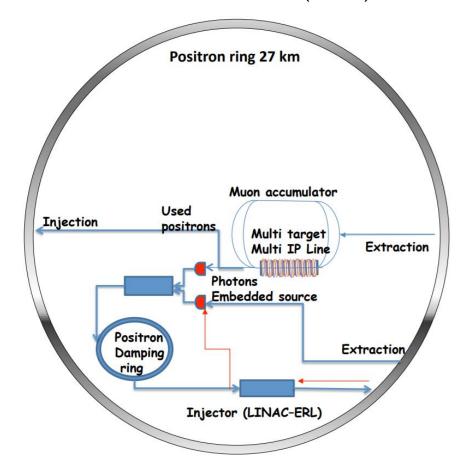
bandiera@fe.infn.it

mazzolari@fe.infn.it

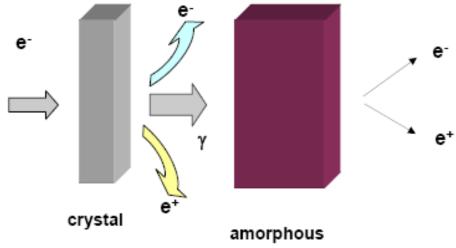
INFN-FERRARA INFRASTRUCTURE

Laboratory fully equipped for silicon micro and nanomachining ISO4 certified clean room (130 m^2)

High-resolution x-ray diffraction


Dicing and polishing equipment

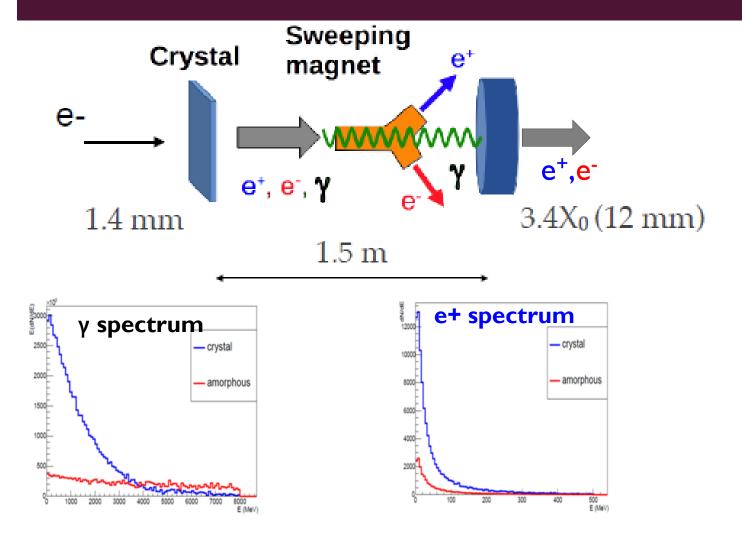
White light and Fizeau interferometers



INNOVATIVE POSITRON SOURCE USING CHANNELING RADIATION IN CRYSTALS

LEMMA PROPOSAL (INFN)

Positron source using a crystal



Idea of R. Chehab, V. Strakhovenko and A. Variola

- ☐ Collaboration with I.Chaikovska (IJCL Orsay), leader of the FCC-ee and LEMMA positron sources groups;
- ☐ Joint efforts on Monte Carlo simulations and crystal tests on beam.

Lol submitted to Snowmass2 I

THE HYBRID POSITRON SOURCE USING CHANNELING: A PROMISING DEVICE FOR FUTURE COLLIDERS

Main advantages

- Enhancement of photon generation in crystals in channeling conditions → enhancement of pair production in the converter target
- Reduction of the Peak Energy Deposition Density (PEDD) in the target material compared to conventional sources (more than I order of mag. less)

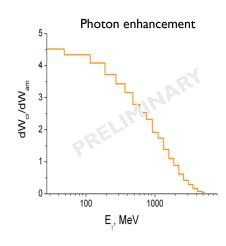
Sinergy with the FCC-ee positron study but the LEMMA positron source has is own challenges (e.g. the very high-intensity, possibility of embedded source..)

TESTS ON BEAM

To check our Monte Carlo simulation for positron source we carried out a test beam @DESYTB in 2019

magnet (charged/neutral separation)

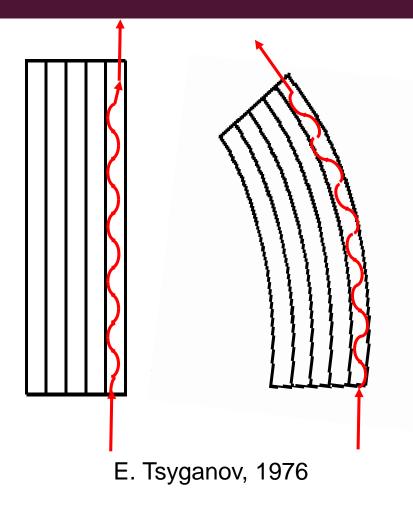
e- beam
@5.6 GeV


crystal on a goniometer

W crystal on a goniometer Axis <100>; 2.25 mm ($< X_0$);

Multiplicity counter
(Scintillator + Si large area)

Future possible tests also @CERN



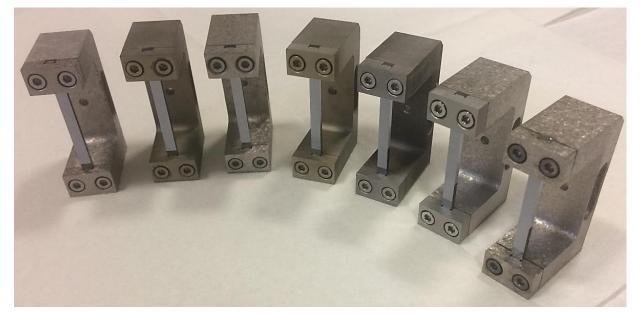
em calorimeter

Preshower to "count"

photons

BENT CRYSTALS FOR MUON BEAM MANIPULATION

Channeling of a charged particle beam in a bent crystal results in steering of its trajectory


Bent crystals can be used in particle accelerators as collimating or extraction element

CRYSTALS FOR COLLIMATION

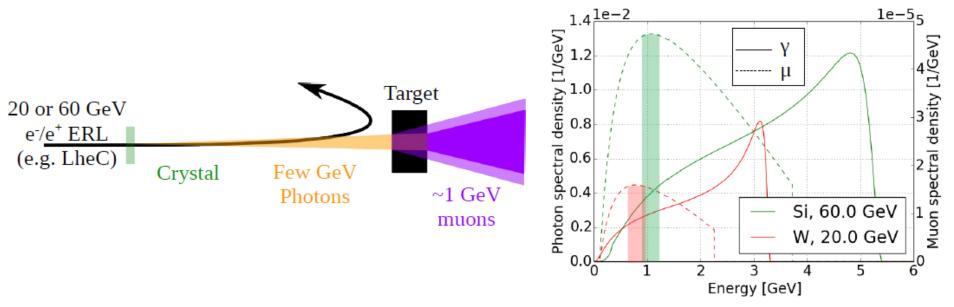
A set of 6 crystals for collimation of the LHC ions circulating beam is underway

Solid experience from manufacturing of crystals for collimation of the LHC circulating beam.

A possible usage of bent crystal in the muon collider collimation system*

INFN FERRARA INTERESTS

CRYSTALLINE TARGETS FOR POSITRON SOURCE:


- Design of high-Z crystalline target for the LEMMA positron source
- Irradiation tests with intense beams (electrons, protons) to evalutate the resistance of crystalline structure
- Beam tests on positron production

BENT CRYSTALS:

- Design of bent crystals for muon beam manipulation
- Beam tests on muon steering
- OTHER POSSIBLE APPLICATIONS (e.g., muon pair production based on channeling radiation, muon beam extraction and focusing, muon cooling..)

BACK UP

Muon pair production based on channeling radiation

- First estimates suggest that muon rates in the order of 10¹²/s within a bandwidth of ±10% can be achieved which is compatible with collider application
 - The emittance is dominated by the target length and may likely be optimised (Here with a 5 cm tungsten target $ε_n$ =0.3 mm)
 - The dechannelling model seem optimistic for electrons due to an underestimation of multiple scattering on the nuclei
 - → Possibly favors the usage of positrons rather than electrons
 - → Requires detailed modeling of the dechanneling process
- Achieving the required longitudinal structure needs to be worked out (ERL design with large bunch charge, bunch trains with an accumulator ring, ...)
 Courtesy of Xavier Buffat

			-			_	des 2 Infinis
	SLC	CLIC	ILC	LHeC	LHeC	LEMMA	FCC-ee
		(380 GeV)	(250 GeV)	(pulsed)	(ERL)		
e- beam energy(GeV)	45.6	380	250	140	60	45 (e+)	45.6
Norm. hor. emitt. (mm.mrad)	30	0.92	5	100	50	18	24.1
Norm. vert. emitt. (mm.mrad)	2	0.02	0.035	100	50	18	89
Bunches/macropulse	1	352	1312	105			2
Repetition Rate	120	50	5	10	CW		200 (Inj)
Bunches/second	120	17600	6560	10^{6}	20×10^{6}		16640
e+/second (10 ¹⁴)	0.08	1.1	1.3	18	440	100	0.06@Inj
Polarization	No	No/Yes	Yes	Yes	Yes	No	No

Courtesy of I. Chaikovska