

Accumulator studies for LEMMA source

M. Boscolo (INFN-LNF)

New Muon Collaboration Leader meets INFN-Accelerator Community 12 October 2020

Ref. M. Boscolo, J.-P. Delahaye, M. Palmer, *"The future prospects of muon colliders and neutrino factories"*, Review of Accelerators Science and Technology, Vol. 10 (2019) 189-214 <u>ArXiv.1808.01858</u>

LEMMA Advantages:

- **1.** Low emittance possible: θ_{μ} is tunable with \sqrt{s} in $e^+e^- \rightarrow \mu^+\mu^ \theta_{\mu}$ can be very small close to the $\mu^+\mu^-$ threshold
- 2. Low background: Luminosity at low emittance will allow low background and low v radiation (easier experimental conditions, can go up in energy)
- **3.** Reduced losses from decay: muons can be produced with a relatively high boost in asymmetric collisions
- 4. Energy spread: muon energy spread also small at threshold, it gets larger as \sqrt{s} increases

LEMMA Disadvantages:

• Rate: much smaller cross section wrt protons (≈ mb)

 $\sigma(e^+e^- \rightarrow \mu^+\mu^-) \approx 1 \ \mu b$ at most

Time steps of the Lemma study

2013: Snowmass concept of low emittance muon beam $e + e \rightarrow \mu^+ \mu^-$ **2016: NIM A** 807 101-107 link first scheme for a muon beam suitable for HE muon collider first positron ring optics & studies of e+ ring-with-target insertion 2017: IPAC17 contributed oral Oct 2017: LEMMA presented at the INFN Machine Advisory Committee June 2018: PR-AB 21, 061005 multi-pass scheme: dedicated optics study to cope with target perturbation definition of accumulator rings requirements **2018: IPAC18** link Proposal for experimental test at DAFNE R&D on target & beam dynamics 2-3 July 2018: ARIES Workshop on Future Muon Colliders in Padova Preparatory meeting for the ESPPU, April 10-11, 2019 CERN link **2019/2020:** Preparation for the EPPSU Muon Collider workshop, October 2019 CERN link Muon Collider meeting, April 2020, CERN link April 2019: ArXiv:1905.05747 Muon Collider Collaboration Meeting, 3/7/20 link May 2020: PR-AB 23, 051001 link

LEMMA

NIMA 807 (2016) 101-107 "Novel proposal for a low emittance muon beam using positron *beam on target*", M. Antonelli, M. Boscolo, R. Di Nardo, P. Raimondi, link

- Paragraph 5.1: SINGLE PASS scheme
- Paragraph 5.2: MULTI PASS scheme

SINGLE PASS (ArXiv:1905.05747)

Muon production target OUTSIDE e⁺ ring: e+ beam passes once through thick target

- Target length $\approx 0.3X_0$
- Higher number of muons/bunch
- Low total power deposited on target for energy loss
- **Compliant with standard muon acceleration schemes**

M. Boscolo, 12/10/20

Emittance increases sizeably with such a thickness in light materials, may be solved with channeling

(crystal target) [Ref. NIMA 807]

5 GeV

5 GeV e

spent" et

beam for et

production

Main e+

Embedded

source

5 to 45 GeV

SC Linac or ERL

"fresh" e+

(5 to 45 GeV)

"spent" e+

45 GeV

e+ Ring

MULTI PASS (PR-AB 21)

- Muon production target INSIDE e⁺ ring:
- e⁺ beam passes multiple times through thin target
- Target length \approx 0.01 X₀
- Small emittance increase with thin target
- High total power deposited on target for energy loss

To fast acceleration

µ⁺ Accumulator ring

N production targets

u⁻ Accumulator ring

"spent" e+ beam

Muon production and accumulation from positrons on target

PHYSICAL REVIEW ACCELERATORS AND BEAMS 23, 051001 (2020)

with the LEMMA single-pass scheme

Large momentum acceptance ring

• Key topic for LEMMA to increase the muon production rate

 $\sigma(e^+e^- \rightarrow \mu^+\mu^-)$

large momentum acceptance allows to work with large production efficiency

 Also very important for fast acceleration using FFA See for example Scott Berg, Padova, 2/7/18: <u>link</u> FFA in RLA arcs or directly in a ring

Muon Accumulator Rings: novel design

β_ν (m)

m),

- Compact: 140 m circumference with 15 T dipoles
- Chromaticity and high order momentum compaction correction achieved by dedicated families of sextupoles, resulting in a very large energy acceptance [-10%,+15%]
- Since the target region is in common for the positron ad the two muon beams, a septum in the first bending magnet is used to separate the beams
- The ring is made by two symmetric arcs and two straight sections, one for the target insertions and one for the RF cavities

22.5 Muon beam energy GeV Circumference 140 m Number of cells 12 3.9 rf frequency GHz MV 200 rf voltage Harmonic number 2100 Number of bunches 1 Parameters table 8.84 Horizontal betatron tune Vertical betatron tune 3.73 0.015 Longitudinal tune -7.12×10^{-5} Momentum compaction Natural horizontal chromaticity -8.28Natural vertical chromaticity -10.37Bunch length 0.9 cm Ring energy acceptance -10%, +15%

Muacc_82n

14.012.6

11.2

Half ring

5.05.00 11/11/19 17.34.07 0.8

0.7

0.6

MUFASA simulation code for the Muon Production and Accumulation

- A dedicated simulation tool name MUFASA has been developed for start-to-end particle tracking simulations, essential for the muon beam dynamics study from production through the accumulation process.
- C++ MonteCarlo that includes the most relevant processes of muon and electron interaction in matter, interfaced with MADX for the 6D tracking.
- MUFASA allowes to determine the optimal parameters to maximise muon brilliance ($\propto N^2/\epsilon)$
 - low-Z $\approx 0.3 X_0$
 - 45 GeV e⁺ beam

more details in: A. Ciarma, INFN-20-07/LNF (10/6/2020) $N = 5 \times 10^{11} e^{+}/bunch$

Beryllium Target

 $\stackrel{\textbf{\tiny (i)}}{=}$ Advantage: most efficient for μ production

After 1500 turns \approx 1.5 lifetimes, $3.5 \times 10^8 \,\mu$ are accumulated

Bue to the multi passages of muons through the target, the beam size and divergence of muons during the accumulation process increase (multiple scattering)

Liquid Lithium Target

- We considered the transverse size of the jet much smaller than the stored beam size to preserve muon beam emittance
- Jet of liquid Lithium mitigates multiple scattering
- \bigotimes Disadvantage: low X₀ \rightarrow long jet target needed

Liquid Lithium Target with Diamond dust

0.7 mrad) 0.0

E 0.5

Emittance

200

0

400

600

No. of turns

800 1000 1200 1400 1600

- Best compromise to increase efficiency of liquid Lithium allowing to reduce target length and strongly suppress multiple scattering
- Lowering β^* at target muon beam emittance is further reduced (as expected)

Recombination positron bunch at the target (revolver configuration)

multiple e⁺ bunches on the target using the delay lines

Multiple thin targets – under study

- Ideally β^* cannot be smaller than target (hourglass effect limits the β^* reduction) \rightarrow
- One way to overcome this effect is to use multiple thin targets and design a transport line with multiple IPs
- Pros: This scheme allows small emittance and better handling of termo-

mechanical stresses

- Cons: longer ring
- More details in: Nanometric muon beam emittance from e⁺ annihilation on multiple thin targets, O. Blanco and A. Ciarma, PR-AB 23,091601 (2020) <u>link</u>
 - Transport line length= 256 m
 - N(e+)= 5x10¹¹ at E+=43.8 GeV
 - 20 Be targets 0.01 X₀
 - e⁺ Energy acceptance ≈ 5%
 - $N_{\mu} = 10^5 \,\mu/bunch$
 - ε(μ)=20μm-rad
- Still limited energy acceptance (5%) no improvement with present accumulator

Conclusions

- A compact muon accumulator ring with very high energy acceptance designed
- Muon beam dynamics from production to accumulation through this ring optics performed thanks to a new particle tracking simulation code interfaced with MADX
- Best solution: 50µm LLi-D film jet target \approx 0.5 X₀ with β *=10 cm \rightarrow N=0.4×10⁹µ/bunch, ϵ (µ)=0.3 µm-rad after 1000 turns
- Further optimization allowed with revolver configuration : $N=10^{9}\mu$ /bunch, $\epsilon(\mu)=0.1 \mu$ m-rad after 200 turns
- Further increase of AR energy acceptance would allow higher e⁺ energy, increasing muon production (E⁺=50 GeV \times 2 in N_µ)
- Further reduction of β^* would reduce muon final emittance.

Back-up

fractions of liquid lithium f(LLi), and diamond powder f(D).

71.18

34.19

22.50

16.77

13.36

12.13

Muon Beam Size

M. Pa	Imer						
↑ Ison			Muon Collid	er Paramete	ers		1
u Reng	H Constant And			Higgs	<u>Multi-TeV</u>		
	Fermilab Site						Accounts for
			Production			Site Radiation	
	ParameterCoM EnergyAvg. LuminosityBeam Energy SpreadHiggs Production/107 secCircumferenceNo. of IPsRepetition Rate β^* No. muons/bunchNorm. Trans. Emittance, ε_{TN} Norm. Long. Emittance, ε_{LN} Bunch Length, σ_s Proton Driver PowerWall Plug Power		Units	Operation			Mitigation
			TeV	0.126	1.5	3.0	6.0
			10 ³⁴ cm ⁻² s ⁻¹	0.008	1.25	4.4	12
			%	0.004	0.1	0.1	0.1
				13,500	37,500	200,000	820,000
			km	0.3	2.5	4.5	6
				1	2	2	2
			Hz	15	15	12	6
			cm 🖉	1.7	1 (0.5-2)	0.5 (0.3-3)	0.25
			10 ¹²	4	2	2	2
			π mm-rad	0.2	0.025	0.025	0.025
			π mm-rad	1.5	70	70	70
			cm	6.3	1	0.5	0.2
			MW	4	4	4	1.6
			MW	200	216	230	270
Exquisite Energy Resolution Allows Direct Measuremento, 17 of Higgs Width				Success of advanced cooling concepts ⇔ several ∠ 10 ³² [Rubbia proposal: 5∠10 ³²]			