DEEP-HybridDataCloud Project overview, achievements

A. Costantini, C. Duma 2/10/2020

- . DEEP-Hybrid DataCloud overview
- Overview of technical activities
- . Conclusions

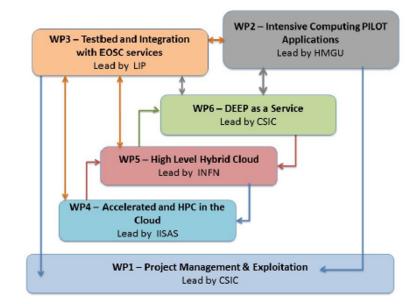
DEEP project in a nutshell . Designing and Enabling E-Infrastructures for intensive data

- Designing and Enabling E-Infrastructures for intensive data Processing in a Hybrid DataCloud (Grant agreement number 777435, Nov 2017 – Apr 2020)
 - 10 Partners, 5 Countries
- Global objective: Promote the use of intensive computing services by different research communities and areas, and the support by the corresponding e-Infrastructure providers and open source projects

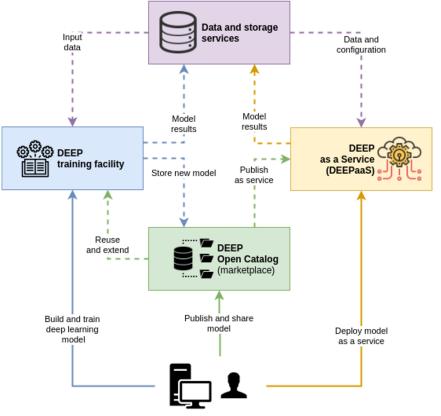
 Focusing on Machine learning, Deep learning, and Post processing

ÚSTAV INFORMATIKY

HelmholtzZentrum münchen projeoteowenvietwirschungszentrum für Gesundheit und Umwelts

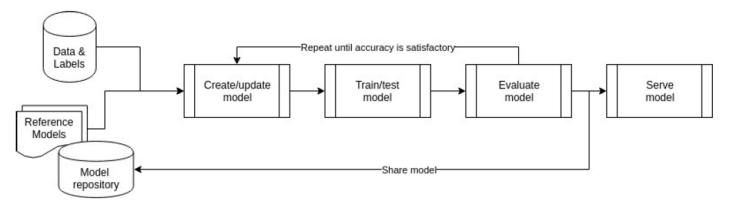

DEEP-HybridDataCloud vision

- Provide specialized cloud services to develop, exploit and share machine learning and deep learning applications → Service Oriented Architectures and platforms
 - Covering the whole application development cycle
 - Focused on all types of users
- Transparent access to specialized computing resources (accelerators, high performance computing) → reduce entry barrier
- Build the EOSC machine learning marketplace as an application exchange → ease of use, foster collaboration, knowledge dissemination
- Using different resources (Cloud, HPC, GPU, etc.)
 → ease of use



DEEP WP Breakdown

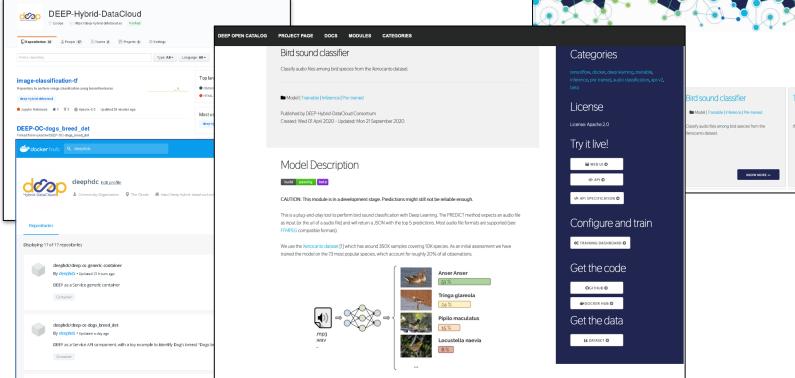
- WP1 (NA): Project Management and Exploitation
 - Project oversight, quality management, admin, etc.
- WP2 (NA): Intensive Computing Pilot Applications
 - Definition and understanding of pilot usage scenarios
- WP3 (SA): Testbed and Integration with EOSC service
 - Project service activities: testbeds, tools, integrations
- WP4 (JRA): Accelerated High Performance Computin the Cloud
 - Support for accelerators and HPC resources
- WP5 (JRA): High Level Hybrid Cloud solutions
 - Platform provisioning, delivering the execution platform WP5
- WP6 (JRA): DEEP as a Service
 - Deliver final solution to the users
- WP7: Ethics requirements
 - Leader: CSIC



High level architecture

- Position as technology providers to support DL/ML in the EOSC
- Generic building blocks (services) for exploitation through EOSC
 - DEEP training facility
 - DEEP as a Service (DEEPaaS)
 - DEEP Open Catalog
- Integration with storage from external initiatives (eXtreme-DataCloud, EGI Data Hub)

Machine learning development cycle



- The project covers all development phases of a machine learning application:
 - Creation, update, improvement of a model (existing or new) → DEEP Open Catalog and DEEP training facility
 - Model training, test, evaluation → DEEP training facility
 - Model deployment as a service → DEEP as a Service

DEEP Open Catalog

Sharing knowledge between users

https://marketplace.deep-hybrid-datacloud.eu

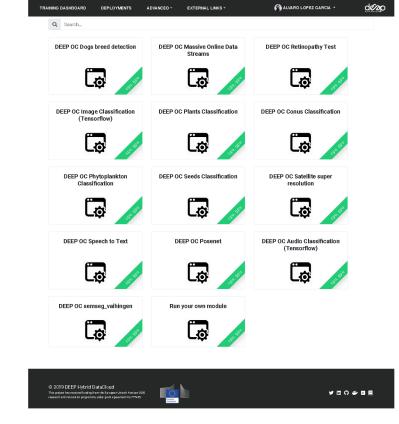
Welcome to the DEEP Open Catalog!

DEEP-Hybrid-DataCloud is delivering a comprehensive platform to easily develop, build, share and deploy Artificial Intelligence. Machine Learning and Deep Learning modules on top of distributed e-Infrastructures.

In the DEEP Open Catalog you can find ready to use modules in a variety of domains. These modules can be executed on your local laptop, on a production server or on top of computing e-Infrastructures supporting the DEEP-Hybrid-DataCloud stack.

Bird sound classifier		TF Benchmarks			
Model Trainable Inferen	ce Pre-trained	Model Train	able		
Classify audio files among bird : Xenocanto dataset.	pecies from the	tf_cnn_benchmar	ks accessed via DEEPaaS API		

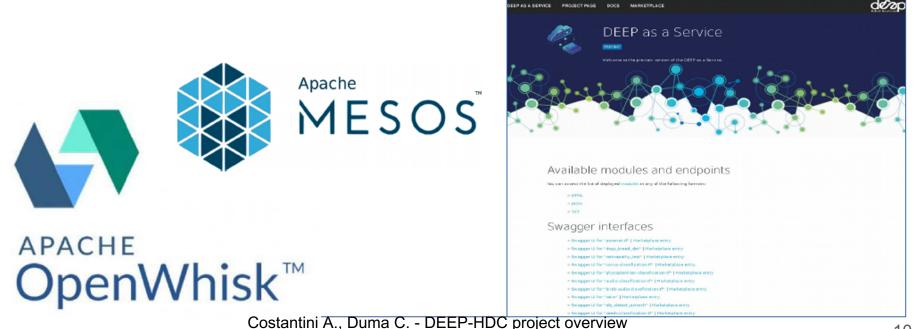
This service is based in the Audio Classification with Tensorflow model


den

DEEP training facility

Development and training environments

https://train.deep-hybrid-datacloud.eu



Train, test and evaluate of models through the DEEPaaS API

- Transparent access to infrastructure resources
- Based on TOSCA templates submitted via INDIGO-DataCloud PaaS orchestrator and Infrastructure Manager

DEEPaaS: DEEP as a Service

Automatic deployment of catalog modules to exploit their functionality https://deepaas.deep-hybrid-datacloud.eu

DEEPaaS API: models as services

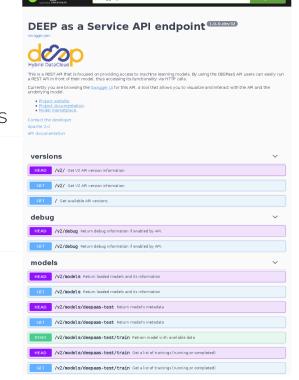
Exposing models through a common and standard-based API

https://deepaas.readthedocs.io

Deep Learning Applications

INTRO IMAGE RECOGNITION MISCELLANEOUS

> This webpage gathers all the applications developed at the Instituto de Física de Cantabria (IFCA) using deep learning techniques.


Image Recognition

Costantini A., Duma C. - DEEP-HDG project voverview

Plants

Description

/swagger.ison

Different users, different needs

• Category 1: Deploy a readily trained network for somebody else to use it on his/her data set

Domain knowledge

• Category 2: Retrain (parts of) a trained network to make use of its inherent knowledge and to solve a new learning task

Domain + machine learning knowledge

• Category 3: Completely work through the deep learning cycle with data selection, model architecture, training and testing

• Domain + machine + technological knowledge

High Level Hybrid PaaS

- Advance TRL of INDIGO-DataCloud PaaS Orchestrator, Infrastructure Manager, Virtual Router and Cloud Info Provider in order to:
 - Scale deployments across private and public clouds with seamless network connections
 - Exploit special hardware resources (namely GPU, Infiniband) from Cloud and HPC environments
 - Ensure flexibility and interoperability through TOSCA and federated authentication (IAM)
- Improved support for hardware resource selection
 - Fine-grained accelerator (GPU) selection
 - Support at information providers modules
- Improved support for hybrid-cloud deployments
 - Leveraging high-level networking solutions
- Improved management of deployment failures
 - Resource selection and error recovery

Overview of technical activities

CNAF for the DEEP-HDC project

- 3M euros (Total project Funding)
 - **375K** (BARI, CNAF, TORINO)
 - **110K** Personale (CNAF)
 - **20K** Missioni (Progetto,

CNAF_CCR)

- 448 PMs over 30 months
 - 56 PMs (INFN)
 - 22 PMs (CNAF)

WP	Task	PM complessivi	CNAF (PM)	Reponsabilità
WP3		12		
WP3	Task 3.1 – Pilot testbeds and integration with EOSC platform and their services	4	3	
WP3	Task 3.2 – Software quality assurance, release, maintenance and support	8	8	Responsabilità INFN: Cristina Duma
WP4		12		
WP4	Task 4.3 – Interaction with HPC resources with PaaS approach	8	1	
WP5	INFN WP Leader	20		WP Leader: Giacinto Donvito/Marica Antonacci
WP5	Task 5.1 – PaaS-level Orchestration Supporting Multi-laaS Hybrid Infrastructures	12	3	Responsabilità INFN: Marica Antonacci
WP5	Task 5.3 – High-level networking orchestration to connect seamlessly to hybrid clouds	3	3	
WP6		12		
WP6	Task 6.1 – Application model building	8	3	
WP6	Task 6.2 – DEEP as a Service deployment and exploitation	4	1	
Totale		56	22	

CNAF: people who reported

Persone	%	WP	Mesi	PM
Salomoni D.	10%	3,5,6	28	2
Duma C.	20%	3,5,6	28	5
Michelotto D.	7%	3	27	2
Ceccanti A.	7%	4,5	28	2
Ronchieri E.	7%	3,6	28	2
Costantini A.	20%	3,4,5,6	21	5
Morganti L.	15%	2,4,5,6	17	3
Falabella A.	7%	5,6	27	2
Vianello E.	20%	3,4	14	2
Caberletti M.	0%	5	0	(

WP3 - Pilot infrastructures and services

LIP/INCD (Provider)

IM: <u>https://im.ncg.ingrid.pt:8800</u> Alien4Cloud: <u>https://a4c.ncg.ingrid.pt</u> OpenStack: <u>https://stratus.ncg.ingrid.pt/</u>

CESNET (Provider)

OpenStack: https://dashboard.cloud.muni.cz/

IFCA/CSIC (Provider)

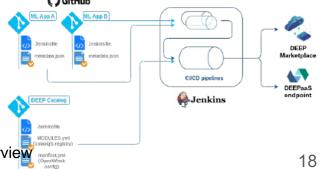
DEEPaaS: https://deepaas.cloud.ifca.es/api/v1/web/deepaas Training dashboard: https://train.deep-hybrid-datacloud.eu/ Mesos (GPUs): https://mesos.cloud.ifca.es/mesos/ OpenStack (DEEP-IAM): https://portal.cloud.ifca.es/ Oneprovider (DEEP-IAM): https://oprov.ifca.es Object store: Swift: https://cephrgw01.ifca.es:8080/swift/v1

PSNC (Provider)

QCG/HPC: ssh ui.eagle.man.poznan.pl Mesos: <u>https://cereus.man.poznan.pl/mesos</u> OpenStack: <u>https://cereus.man.poznan.pl/horizon</u>

IISAS (Provider)

Mesos (GPUs): <u>https://mesos.ui.sav.sk/mesos-web/</u> OpenStack (DEEP-IAM): <u>https://horizon.ui.savba.sk/horizon/</u> Oneprovider (DEEP-IAM): <u>https://oneprovider.fedcloud.eu</u>



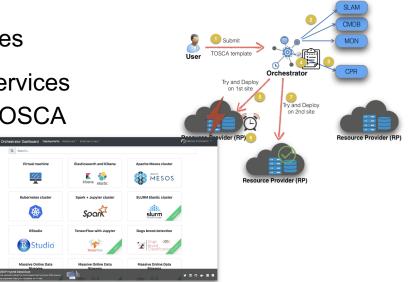
WP3 - Software quality assurance, release, maintenance and support

• Release management

- Software and platform release and maintenance
- Project-wide documentation, product documentation, release notes
- Security coordination and external assessment
- Extensive automation in place for relevant processes
 - Software Quality Assurance (SQA), Software release and maintenance
 - State of the art continuous integration infrastructure
- Work with user communities with DevOps approach
 - Collaboration with WP2

DEEP Hybrid-DataCloud EEP eu second software release and platform Please welcome DEEP ROSETTA 🗲 Developing, training, sharing and deploying your model has never been easier! Find more information here: #H2020 #MachineLearning #DeepLearning #EOSC dead DEEP - ROSET 35 PM - Feb 13, 2020 - Twitter Web An GitHub (L App B)

WP4 - Interaction with HPC resources with PaaS approach


Deployment of a Kubernetes cluster

- Support for GPU in Kubernetes is provided via NVIDIA runtime plugin
- Integration with DEEP IAM using OpenID Connect (OIDC) standard
- Authorization supported via Attribute Based Access Control (ABAC) in Kubernetes
- Support to the deployment of production site with GPUs and OIDC

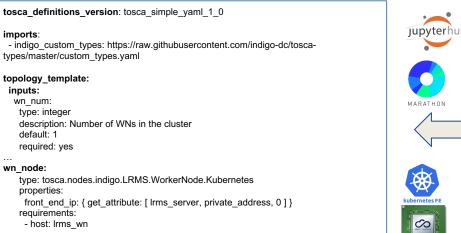
WP5 - PaaS-level Hybrid Cloud solutions

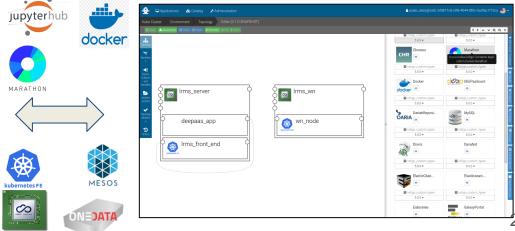
5.1 Support to Multi-IaaS Hybrid Infrastructures

- Integration tests with the developed services
- Testing of automatc deployment via TOSCA
- Orchestrator-Dashboard
 - tests and deployments

5.3 High-level networking orchestration

• This activity has not been finalised due to people leave


WP6 - DEEP as a Service


- Alien4Cloud high level user interface as DEEPaaS solution
- Application lifecycle contribution

imports:

inputs:

deployment, testing and validation Ο

Conclusions

- DEPP-Hybrid DataCloud outcomes and results presented at the final review
 - Held on June 4th 2020, virtually
 - Excellent result in the final evaluation
 - *"Project has delivered exceptional results with significant immediate or potential impact"*
 - CNAF had an important role in WP3 (Release management and Software Quality Control)
 - This central role and the related activities have been recognized by the reviewers
 - "WP3 [...] it ensured the production of an industrial quality software"

CNAF contribution

- Depending on the effort distribution, CNAF supported all the JRAs by contributing to deployment, testing and validation of the tools and services
 - Used in the current e-infrastructures
 - Available in the EOSC marketplace
- Other contribution
 - Fund fixed-term contracts
 - Strengthen the relation with other players and partners