

Energy-dependent morphology of the Pulsar Wind Nebula HESS J1825-137 in the GeV domain: investigating its PWN / γ-ray halo nature

> Recently published: A&A 640 A76 (2020) https://arxiv.org/abs/2006.11177

Principe Giacomo^{*1,2,3},

Mitchell A., Hinton J., Parson D., Caroff S. and Funk S.

*on behalf of the Fermi-LAT collaboration

¹University of Trieste, Trieste, Italy; ²INFN, Trieste, Italy; ³INAF–IRA, Bologna, Italy

- First detected in the H.E.S.S. Galactic Plane Survey (2005)
- XMM-Newton/Suzaku: reveal diffuse x-ray emission size~0.1°
- Recent H.E.S.S. results (2019):
 - \circ with a size >100 pc is the largest PWN currently known
 - TeV energy dependent morphology
- HESS J1825-137 is one of the three sources detected above 100 TeV by HAWC (2020), making it a promising Pevatron candidate.

Powered by the pulsar PSR J1826-1334 (PSR B1823-13):

- Characteristic age = 21 kyr
- Period = 101 ms
- Distance = 4kpc

We performed the *first energy dependent extension* and spectral analysis of HESS J1825-137 in the GeV domain using **11.6 years** of *Fermi-LAT* data.

Analysis procedure:

1) General analysis (on the entire energy range 1 GeV - 1 TeV):

2) Energy-resolved morphological study (2DGaussian, Radial profile)

Extension analysis in 5 energy bins (4 bins in 1-100 GeV, 1 bin in 100 GeV – 1TeV)

• Optimization, localization, and spectral analysis

The initial model taken from the FGES paper (Ackermann et al. 2018):

Spatial Model: 2DGaussian

- Sigma = 0.79°
- RA = 276.296°
- DEC = -13.992°

Spectrum Type: LogParabola

<u>Models</u>: 4FGL, standard LAT diffuse model, and optimized model for the Galactic plane (Ackermann et al. 2017)

Data	Values					
Selection						
IRFs	P8R3v2					
Time Interval	11.6 years 1 GeV – 1 TeV 8 per decade (for spectra) 105°					
Energy Range						
Energy Bins						
Zenith angle						
ROI (pixel) size	15° (0.1°)					

FGES (2017): 6 years, 10 GeV – 1 TeV

 10^{2}

- **1. Single zone model,** NAIMA package (Zabalza 2015) IC from leptonic population, Radiation fields parameter from Popescu (2017), From Xray observations the max B-field is 4 muG
- 1. Multi-zone modelling, GAMERA package (Hahn 2016) Summation of 20 zones treated as expanding shells in space (initially spherically symmetric), Evolution in time until the system age (assumed as PSR characteristic age) is reached, Burst like injection in each shell

_		
	Parameter	H.E.S.S. and <i>Fermi</i> -LAT
	$W_e \ (10^{49} \ {\rm erg})$	$2.33^{+1.00}_{-0.64}$
l	Γ_1	$2.02_{-0.19}^{+0.15}$
l	Γ_2	$3.23^{+0.02}_{-0.02}$
l	E_b (TeV)	$0.80\substack{+0.18\\-0.14}$
l	χ^2/ndf	20.8/34

PWN vs TeV Halo

Def TeV Halo (Giacinti et al. 2019): area where En. Density_{e-} << En. Density_{ISM} (0.1 eV cm⁻³)

		Giacinti et a	1 2010						
Stage 1 (t ≲ 10 kyr) FS	Stage 2 (t ~ 10 – 100 kyr)	Glacifici et a	11. 2019						
RS	- 1 5 1	System	Crab	MSH 15-52	G21.5-0.9	G0.9+0.1	Vela X	G327.1-1.1	J1825-137
pulsar	SNB	Age (kyr) ^a	0.94	1.56	4.85	5.31	11.3	18	21.4
	(Intracional Contraction of Contrac	PSR ^b	B0531+21	B1509-58	J1833-1034	J1747-2809	B0833-45	с	B1823-13
The second second		$\log(\dot{E})$ (erg/s)	38.65	37.23	37.53	37.63	36.84	36.49	36.45
ISM density	PWN (Distance (kpc)	2	4.4	4.1	8.5	0.28	9	3.93
gradient		R _{SNR} (pc)	$?^{d}$	38.4	2.98	19.8	19.5	22	120
(in all 3 panels) SNR ISM	ISM)	R _{PWN} (pc) ^e	2.8	19.2	0.8	2.5	12.2	10.5	?
		$v \times t (pc)^{f}$	0.27	0.45	1.4	1.5	3.3	5.2	6.2
supernova Stage 3 (t ≥ 100 kyr)	With the second se	R _{TeV} (pc) ^g	< 3	11	< 4	< 7	2.9	3	50
• pulsar	halo	R _{X-ray} (pc)	0.24	10.2	0.8	4.9	3.08	13	9.1
pulsar wind	100 Martin	Stage ^h	1	1	1b	1b	2	2	2b
term. shock	e a	Refs. ⁱ	Ι	II	III	IV	V	VI	VII
pulsar wind	SNR SNR								
nebula	ISM ISM								1
>10 TeV e ^{+/-}			$\varepsilon_{e^{-}} = 0.1 \pm 0.3 \text{ eV cm}^{-3}$						
> 1 TeV	Giacinti et al. 2019					•			J
gamma-rays	annon ann ann ann ann ann ann ann ann an								

In our work we obtain a compatible result ($\varepsilon_{e^-} = 0.16$ eV cm⁻³), confirming the composite (**PWN–TeV halo**) nature of HESS J1825-137.

- We analyzed 11.6 years of Fermi-LAT data (1 GeV 1 TeV) performing a morphology and spectral analysis
- We performed for the first time a study of the energy dependent morphology of the PWN in the GeV domain
- We modeled the SED and the combined SED/morphology evolution using the NAIMA and GAMERA modelling pack.
- We have estimated the electron's energy density in order to investigate the PWN TeV halo nature.

Paper published in A&A, 640 A76 (2020) : Principe et al., 2020 (<u>https://arxiv.org/abs/2006.11177</u>)

Thank you very much for your attention!

R.A. (J2000)

- We have analyzed 11.6 years of Fermi-LAT data between 1 GeV and 1 TeV performing a morphology and spectral analysis
- We have performed for the first time a study of the energy dependent morphology of the PWN HESS J1825-137 in the GeV domain
- We model the SED and the combined SED morphology evolution using the NAIMA and GAMERA modelling packages.
- We have estimated the electron's energy density in order to investigate the PWN TeV halo nature.
- The improved sensitivity and resolution of CTA in the GeV and TeV domain, will allow the morphology and spectrum of this PWN to be more accurately resolved, further constraining the nature of its emission.. (poster at the 1st CTA symposium

Paper published in A&A, 640 A76 (2020) : 32-100 GeV 100-1000 GeV -13°00'-Principe et al., 2020 (https://arxiv.org/abs/2006.11177) (J2000) ູ່ -14°00' -15°00'-Thank you very much for your attention! Black: PSR current pos. Blue est. initial PSR pos. for the characteristic age of 21 kyr. Red: est. initial PSR pos. for an age of 60 kyr 18h32m 28m 24m 20m Principe G. – 1° Workshop on Gamma-ray Halo, Dec. 2020 – The PWN HESS J1825-137 seen by Fermi-LAT 9