Multiwavelength view of halos around pulsars

Mattia Di Mauro

F. Donato and S. Manconi

First halo around pulsar workshop December 3 2020.

Overview of the talk

- 1. Detection of a γ-ray halo around Geminga with the Fermi-LAT data and implications for the positron flux MDM, S. Manconi, F. Donato, PRD 100, 123015 (2019)
- Evidences of low-diffusion bubbles around Galactic pulsars MDM, S. Manconi, F. Donato PRD 101, 103035 2020
- Prospects for the detection of synchrotron halos around middle-age pulsars MDM, S. Manconi, F. Donato Astro2020
 - Inverse Compton Scattering (ICS) halos (gamma rays)
 - Angular extension at GeV and TeV.
 - Proper motion effect.
 - Constraining the positron excess.
 - Current results on ICS halos at GeV and TeV energies.
 - Synchrotron halos (from radio to X rays)
 - Angular extension at radio and X-ray energies.
 - Current limitations for current X-ray and radio observations.
 - Prospects for detection by current and future experiments.

Origin of cosmic-ray positrons

- Positrons are emitted through the secondary mechanism (CRs ISM —> X e⁺).
- An excess of positrons above 10 GeV with respect to the secondary production has been measured by different experiments.
- Annihilation or decay of dark matter particles and emission from PWNe have been suggested as possible interpretations.

y rays produced by inverse Compton scattering (ICS)

ICS halo extension

- D>10²⁷ cm²/s —> several ICS halos undetectable by IACTs and HAWC.
- At GeV most of the pulsars have a very extended halo.

Pulsar proper motion

- The average pulsar proper motion is around 200 km/s (Faherty et al. 2007).
- At GeV the proper motion is not relevant only for d>a few kpc and T<a few hundreds kyr.
- At TeV the effect is much smaller.

6

Geminga proper motion

- Geminga has a proper motion of **211 km/s** which implies this pulsar moved about **70 pc** across its age.
- We have implemented this effect in our model.

See talk by Silvia

Manconi on December 2

 Our analysis is unique in γ-ray astronomy because we search for a source that is moving across the sky in γ rays.

Posselt et al. 2008

Di Mauro, Manconi, Donato PRD 100, 123015 (2019)

HAWC results for Geminga and Monogem PWNe

- HAWC detected an extended emission from Geminga and Monogem PWNe for E>5 TeV.
- Interpreted as ICS emission from e⁺ and e⁻ accelerated from the PWN.
- In the vicinity of the PWN, the diffusion coefficient D must be about 500 times smaller than the average in the Galaxy.

Recent results from HAWC

A New Population of Ultra-High-Energy Gamma-Ray Sources Detected by HAWC

A.U. Abeysekara,¹ A. Albert,² R. Alfaro,³ J.R. Angeles Camacho,³ J.C. Arteaga-Velázquez,⁴ K.P. Arunbabu,⁵

D. Avila Rojas,³ H.A. Ayala Solares,⁶ V. Baghmanyan,⁷ E. Belmont-Moreno,³ S.Y. BenZvi,⁸ C. Brisbois,⁹

K.S. Caballero-Mora,¹⁰ T. Capistrán,¹¹ A. Carramiñana,¹¹ S. Casanova,⁷ U. Cotti,⁴ J. Cotzomi,¹²

S. Coutiño de León,¹¹ E. De la Fuente,^{13,14} C. de León,⁴ S. Dichiara,¹⁵ B.L. Dingus,² M.A. DuVernois,¹⁶

J.C. Díaz-Vélez,^{13,14} R.W. Ellsworth,⁹ K. Engel,⁹ C. Espinoza,³ H. Fleischhack,¹⁷ N. Fraija,¹⁵ A. Galván-Gámez,¹⁵

Recent results from HAWC

A New Population of Ultra-High-Energy Gamma-Ray Sources Detected by HAWC

Predictions for the e⁺ flux from Geminga using HAWC data

- Tuning the model with HAWC data (above 10 TeV) is not possible to have a precise prediction for the AMS-02 positron excess.
- We should use γ -ray data between 10 GeV to 1 TeV.
- *Fermi*-LAT is ideal for this scope:
 - It detects γ rays between 100 MeV to TeV.
 - It covers the entire sky every 3 hours
 - It is observing the sky since more than 10 years.

See talk by Silvia Manconi on December 2 Analysis of Fermi-LAT data

- We have performed an analysis of 115 months of Fermi-LAT data for E>8 GeV.
- Our model with the pulsar proper motion is preferred at least at 4σ significance.
- We find a 7.8-11.8 σ significance emission from Geminga with a diffusion D(1 GeV)= 2.3 10²⁶ cm²/s with δ=0.33.

Di Mauro, Manconi, Donato PRD 100, 123015 (2019)

ICS γ**-ray and positron flux**

See talk by Silvia Manconi on December 2

ICS γ**-**ray and positron flux

Di Mauro, Manconi, Donato PRD 100, 123015 (2019)

Brightest predicted halos and HAWC

- We select pulsars from the ATNF with the brightest predicted ICS halo above 1 TeV.
 - Most of them are already detected by HAWC!!

PSR	l	b	d	T	Ė	$\Phi_{\gamma}^{10 \text{ TeV}}$	θ_{68}	Name	Class	
	[deg]	[deg]	$[\mathrm{kpc}]$	[kyr]	[erg/s]	$[({ m TeVcm^2s})^{-1}]$	[deg]			
J1826-1256	18.56	-0.38	1.55	14	$3.6\cdot 10^{36}$	$2.5 \cdot 10^{-13}$	0.89	2 HWC J1825-134	UNID	
J2021+3651	75.22	0.11	1.80	17	$3.4\cdot10^{36}$	$1.6 \cdot 10^{-13}$	0.82	$2 \mathrm{HWC} \mathrm{J} 2019 + 367$	UNID	
J1813-1246	17.24	2.44	2.63	43	$6.2\cdot 10^{36}$	$8.6 \cdot 10^{-14}$	0.60	2HWC J1812-126	UNID	
J1907+0602	40.18	-0.89	2.37	20	$2.8\cdot 10^{36}$	$6.7 \cdot 10^{-14}$	0.64	$_{ m 2HWC\ J1908+063}$	UNID	
J0633+1746	195.13	4.27	0.19	342	$3.3\cdot 10^{34}$	$5.8 \cdot 10^{-14}$	6.54	GEMINGA PWN	TEV HALO	
B0656+14	201.11	8.26	0.29	111	$3.8\cdot 10^{34}$	$3.4 \cdot 10^{-14}$	4.71	2HWC J0700+143	TEV HALO	
B1951 + 32	68.77	2.82	3.00	107	$3.7\cdot 10^{36}$	$3.0 \cdot 10^{-14}$	0.46	undetected	undetected	
J1811-1925	11.18	-0.35	5.00	23	$6.4\cdot10^{36}$	$2.8 \cdot 10^{-14}$	0.30	2HWC J1809-190	UNID	
B1823-13	18.00	-0.69	3.61	21	$2.8\cdot 10^{36}$	$2.6 \cdot 10^{-14}$	0.41	2HWC J1825-134	UNID	
J1935+2025	56.05	-0.05	4.60	21	$4.7\cdot 10^{36}$	$2.5 \cdot 10^{-14}$	0.32	SNR G054.1+00.3	PWN	
J1954+2836	65.24	0.38	1.96	69	$1.1\cdot 10^{36}$	$2.3 \cdot 10^{-14}$	0.77	$_{ m 2HWC}$ J1955+285	UNID	
J1809-1917	11.09	0.08	3.27	51	$1.8\cdot 10^{36}$	$1.5 \cdot 10^{-14}$	0.47	2HWC J1809-190	UNID	
J1838-0655	25.25	-0.20	6.60	23	$5.6\cdot 10^{36}$	$1.3 \cdot 10^{-14}$	0.22	2HWC J1837-065	PWN	
J1856+0245	36.01	0.06	6.32	21	$4.6\cdot 10^{36}$	$1.2 \cdot 10^{-14}$	0.23	$_{ m 2HWC\ J1857+027}$	UNID	
J1958+2846	65.88	-0.35	1.95	22	$3.4\cdot10^{35}$	$1.2 \cdot 10^{-14}$	0.79	2HWC J1955+285	UNID	
J1740+1000	34.01	20.27	1.23	114	$2.3\cdot 10^{35}$	$1.1 \cdot 10^{-14}$	1.15	undetected	undetected	
J1913+1011	44.48	-0.17	4.61	169	$2.9\cdot 10^{36}$	$9.1 \cdot 10^{-15}$	0.27	2HWC J1912+099	SHELL	
J1837-0604	25.96	0.27	4.77	34	$2.0\cdot 10^{36}$	$8.6 \cdot 10^{-15}$	0.32	2HWC J1837-065	UNID	
J1907+0631	40.52	-0.48	3.40	11	$5.3\cdot 10^{35}$	$6.9 \cdot 10^{-15}$	0.41	$2 \mathrm{HWC} \mathrm{J} 1908{+}063$	UNID	
J1928+1746	52.93	0.11	4.34	83	$1.6\cdot 10^{36}$	$6.5 \cdot 10^{-15}$	0.30	2HWC J1928+177	UNID	
J0633+0632	205.09	-0.93	1.35	59	$1.2\cdot 10^{35}$	$5.8 \cdot 10^{-15}$	1.14	HAWC J0635+070	TEV HALO	
J1831-0952	21.90	-0.13	3.68	128	$1.1\cdot 10^{36}$	$5.6 \cdot 10^{-15}$	0.39	2HWC J1831-098	PWN	
J1828-1101	20.50	0.04	4.77	77	$1.6\cdot 10^{36}$	$5.3 \cdot 10^{-15}$	0.28	2HWC J1831-098	UNID	

Is HESS detecting ICS halos?

- Source detected by HESS and classified in TeVCat as PWN or Unid.
 - We have a list of 27 sources.
- We use HESS flux maps in HGPS*.
- We extract the source surface brightness that we use to calculate D₀.

16

*correlation radius of 0.1 and 0.2 deg and in maps with a pixel size of 0.02 deg.

Results for the diffusion coefficient around PWNe

- We find a diffusion coefficient around the PWNe of our sample of 8 10²⁶ cm²/s at 1 TeV.
- The diffusion coefficient around PWNe is about 2 orders of magnitude lower than the value found from CR data.
- We find that the size of the ICS halo is on average **35 pc**.

17

X rays produced by synchrotron (sync) radiation

X-ray telescopes (XMM, Chandra, Swift,)

Future experiment concepts

Synchrotron halos calculation

Flux of photons for Sync.

$$\phi^{\mathrm{IC,Sync}}(E_{\gamma},\theta) = \int_{E_{\gamma}}^{\infty} dE \mathcal{M}(E,\theta) \mathcal{P}^{\mathrm{IC,Sync}}(E,E_{\gamma})$$

$$\mathcal{M}(E,\theta) = \int_{\Delta\Omega} d\Omega \int_0^\infty dr \, \mathcal{N}_e(E,r)$$

Synchrotron power

$$\frac{dN_{\rm Sync}}{dE_{\gamma}dt} = \frac{1}{hE_{\gamma}} \frac{dE_{\rm sync}}{d\nu dt}$$

$$\frac{dE_{\rm sync}}{d\nu dt} = \frac{\sqrt{3}e^3B}{m_ec^2}G(x)$$

Aharonian et al. 2010

Synchrotron flux from Geminga

- e[±] that produce the ICS emission at 10 TeV (10 GeV) have the peak of Sync flux at roughly 0.1 keV (0.1 eV).
- The sync halos at X-ray energies are not affected so much by proper motion.
- Surface brightness for the synchrotron emission from Geminga and a Geminga-like extended halo placed at d = 2.5 kpc from the Earth.

Extension of Geminga sync. halo

- For sources within a few kpc, sync. halos are at least of the size of one degree at radio and X-ray energies.
 - This makes the detection of these halos very challenging with current X-ray and radio telescopes.

Extension of sync. halos

- We ranked the pulsars from the ATNF catalog according to the sync. flux in the XMM energy range.
- Most of the extensions are of the order of 0.3-0.6 deg.

Name	GLON	GLAT	d	age	Edot	θ_{68}	ſ
	[deg]	[deg]	kpc	kyr	$10^{36} {\rm erg/s}$	[deg]	Ī
J2229+6114	106.647	2.949	3	10.5	22.5	0.45	Ī
B0833-45	263.552	-2.787	0.28	11.3	6.92	4.18	
J1418-6058	313.325	0.135	1.89	10.3	4.95	0.67	
J1826-1256	18.556	-0.377	1.55	14.4	3.58	0.84	
J1813-1246	17.244	2.445	2.63	43.4	6.24	0.47	
J2021 + 3651	75.222	0.111	1.8	17.2	3.38	0.72	
B1706-44	343.098	-2.686	2.6	17.5	3.41	0.52	
J1935 + 2025	56.051	-0.053	4.6	20.9	4.66	0.27	
J0940-5428	277.51	-1.292	0.38	42.2	1.93	3.27	
J1907 + 0602	40.182	-0.894	2.37	19.5	2.83	0.55	
J1112-6103	291.221	-0.462	4.5	327	4.53	0.27	
J1524-5625	323.0	0.351	3.38	318	3.21	0.37	
J1747-2958	359.305	-0.841	2.52	25.5	2.51	0.52	
B1823-13	18.001	-0.691	3.61	21.4	2.84	0.35	
J1016-5857	284.079	-1.88	3.16	21	2.58	0.41	
B1757-24	5.254	-0.882	3.8	15.5	2.59	0.35	
B1951 + 32	68.765	2.823	3.0	107	3.74	0.4	
B1046-58	287.425	0.577	2.9	20.3	2.01	0.45	
J1105-6107	290.49	-0.846	2.36	63.3	2.48	0.52	
J1803-2137	8.395	0.146	4.4	15.8	2.22	0.3	
J1809-1917	11.094	0.08	3.27	51.3	1.78	0.38	

Current observations of pulsars and PWNe in X rays

Ruo-Yu Liu et al. ApJ 875 (2019) no.2, 149

X-ray observations compared to halo size and HAWC data

• AMEGO, with a field of view of 2.5 sr and a spatial resolution of the order of 2 deg, is ideal to detect these halos.

Astro2020 Science White Paper

Prospects for the detection of synchrotron halos around middle-age pulsars

Multi-Messenger Astronomy and Astrophysics

Principal Author:

Name: Mattia Di Mauro Institution: NASA Goddard Space Flight Center and Catholic University of America, Department of Physics Email: mdimauro@slac.stanford.edu

Co-authors:

Name: Manconi Silvia, Donato Fiorenza Institution: Dipartimento di Fisica, Università degli Studi di Torino and Istituto Nazionale di Fisica Nucleare, Italy Email: manconi@to.infn.it, donato@to.infn.it

Geminga SED from MeV to TeV

Most promising pulsars

Considering an efficiency for the conversion of energy into electrons and positrons pairs of 1% we find that **AMEGO should be able to detect about 30** synchrotron halos from middle-age pulsars.

Name	1 [deg]	b [deg]	age [kyr]	dist [kpc]	\dot{E} [erg/s]
B1055-52	285.984	6.649	535	0.09	$3.01 \cdot 10^{34}$
J0633+1746	195.134	4.266	342	0.19	$3.25\cdot 10^{34}$
J1813-1246	17.244	2.445	43	2.63	$6.24 \cdot 10^{36}$
B1951+32	68.765	2.823	107	3.0	$3.74 \cdot 10^{36}$
J1105-6107	290.49	-0.846	63	2.36	$2.48 \cdot 10^{36}$
B0656+14	201.108	8.258	111	0.29	$3.81\cdot 10^{34}$
B0906-49	270.266	-1.019	112	1.0	$4.92\cdot 10^{35}$
J1809-2332	7.39	-1.995	68	0.88	$4.3 \cdot 10^{35}$
J1044-5737	286.574	1.163	40	1.9	$8.03\cdot 10^{35}$
J1112-6103	291.221	-0.462	33	4.5	$4.53 \cdot 10^{36}$
J1459-6053	317.886	-1.791	65	1.84	$9.09\cdot 10^{35}$
J1954+2836	65.244	0.377	69	1.96	$1.05\cdot10^{36}$
J1524-5625	323.0	0.351	32	3.38	$3.21 \cdot 10^{36}$
J1732-3131	356.307	1.007	111	0.64	$1.46\cdot10^{35}$
J1028-5819	285.065	-0.496	90	1.42	$8.32\cdot10^{35}$

Conclusions

- Several ICS halos have been already detected at TeV energies by IACTs and HAWC.
- The first ICS halo has been detected also at GeV energies.
 - We showed the limitations of detecting halos at GeV and TeV energies.
- At lower energies Sync halos are challenging to find due to their size that is much larger or comparable with X-ray telescopes field of view.
- The future AMEGO experiment is designed to have a large field of view.
 - AMEGO could detect tens of these halos produced by Synchrotron radiation.
 - AMEGO could thus provide key information to estimate the contribution of PWNe to the positron excess.

Backup slide

Cosmic-ray e[±] accelerated by PWNe

- The engine of a PWN is a pulsar, i.e. a rapidly spinning neutral star (NS).
- A NS has huge magnetic fields (10⁹-10¹² G) which produce wind of particles extracted from the NS surface.
- This wind shines from radio to gamma rays and after a few kyrs interact with the SNR reverse shock.
- The pulsar proper motion and the interaction with the SNR reverse shock generate a relic PWN and a bow shock.

Number of detectable ICS halos

- An other interesting question is: how many ICS halos current and future gamma-ray experiments could detect?
- We took the pulsars in the ATNF catalog and we calculate the predicted gamma-ray flux.
- We focused the results on HESS, HAWC and CTA.

Gemings pulsar proper motion

 Geminga has a proper motion of 211 km/s which implies this pulsar moves about 70 pc across its age.

SED of three sources emitting VHE gamma rays

So	Source name RA (°)		Dec (°)	Extension	> F (10 ⁻¹⁴	\sqrt{T}	\sqrt{TS} > nearest 2HWC		Distance to		$\sqrt{TS} >$	
					56 TeV (^o) $ ph cm^{-2} s^{-1} $) 56 1	TeV	source	2HWC sour	ce(°)	100 TeV
eHW	C J0534+220	83.61	1 ± 0.02	22.00 ± 0.03	PS	1.2 ± 0.2	12	0.9	J0534+220	0.02		4.44
eHW	C J1809-193	272.4	6 ± 0.13	-19.34 ± 0.14	0.34 ± 0.1	$13 2.4^{+0.6}_{-0.5}$	6.5	97	J1809-190	0.30		4.82
eHW	C J1825-134	276.4	0 ± 0.06	-13.37 ± 0.06	0.36 ± 0.0	4.6 ± 0.5	14	1.5	J1825-134	0.07		7.33
eHW	C J1839-057	279.7	7 ± 0.12	-5.71 ± 0.10	0.34 ± 0.0	1.5 ± 0.3	7.0	03	J1839-065	0.96		3.06
eHW	C J1842-035	280.7	2 ± 0.15	-3.51 ± 0.11	0.39 ± 0.0	1.5 ± 0.3	6.	63	J1844-032	0.44		2.70
eHW	C J1850+001	282.5	9 ± 0.21	0.14 ± 0.12	0.37 ± 0.1	$16 1.1^{+0.3}_{-0.2}$	5.3	31	J1849+001	0.20		3.04
eHW	C J1907+063	286.9	1 ± 0.10	6.32 ± 0.09	0.52 ± 0.0	$09 2.8 \pm 0.4$	10).4	J1908+063	0.16		7.30
eHW	C J2019+368	304.9	5 ± 0.07	36.78 ± 0.04	0.20 ± 0.0	$05 1.6^{+0.3}_{-0.2}$	10).2	J2019 + 367	0.02		4.85
eHW	C J2030+412	307.7	4 ± 0.09	41.23 ± 0.07	0.18 ± 0.0	$06 0.9 \pm 0.2$	6.4	43	J2031+415	0.34		3.07
	Source		\sqrt{TS}	Extension (°)	ϕ_0 (10	⁻¹³ TeV cm ² s) ⁻	1	α		E_{cut} (TeV)	PL di	iff
	eHWC J1825	5-134	41.1	0.53 ± 0.02	2.12 ±	0.15		2.12	± 0.06	61 ± 12	7.4	
	Source \sqrt{TS}		Extension (°)	ϕ_0 (10	$\phi_0 \ (10^{-13} \text{ TeV cm}^2 \text{ s})^{-1}$		α		β	PL di	iff	
	eHWC J1907+063 37.8		0.67 ± 0.03	0.95 ±	0.95 ± 0.05		2.46 ± 0.03		0.11 ± 0.02 6.0			
	eHWC J2019	+368	32.2	0.30 ± 0.02	0.45 ±	0.03		2.08	± 0.06	0.26 ± 0.05	8.2	

HESS flux maps

- We selected sources detected mainly by HESS because they released flux maps.
- The flux is provided for a correlation radius of 0.1 and 0.2 deg and in maps with a pixel size of 0.02 deg.
- We removed sources close to our sources of interests.

Di Mauro et al. arXiv:1908.03216 submitted to PRD

Surface brightness data

Di Mauro et al. arXiv:1908.03216 submitted to PRD