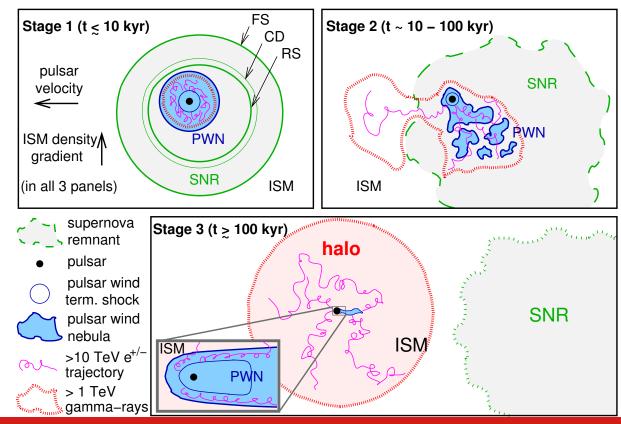
H.E.S.S. results on extended emission surrounding middle-aged pulsars

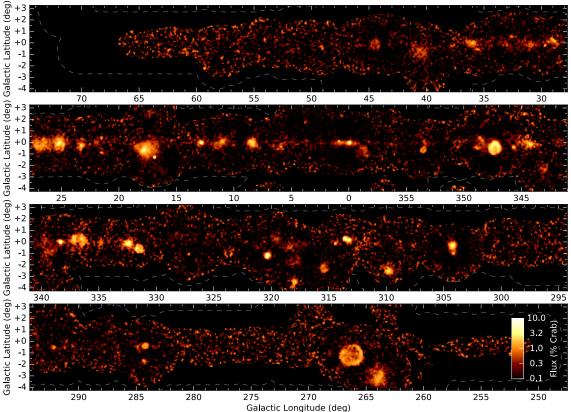
A. Mitchell (UZH) for the H.E.S.S. Collaboration 1st Workshop on Gamma-ray Halos around Pulsars 01/12/20


H.E.S.S

University of Zurich

What are "middle-aged" pulsars?

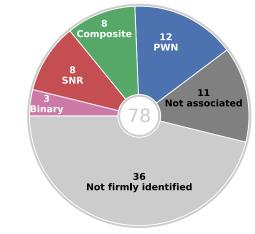
- More related to evolutionary stage than fixed age range
- Roughly: few 10s kyr 100s kyr
- System well past PWN reverberation phase
- Halo emission is far from plerion turbulence
- Complex smooth evolutionary transitions
 → unclear catagorisation
- This talk: consider
 Stage 2 and Stage 3 systems

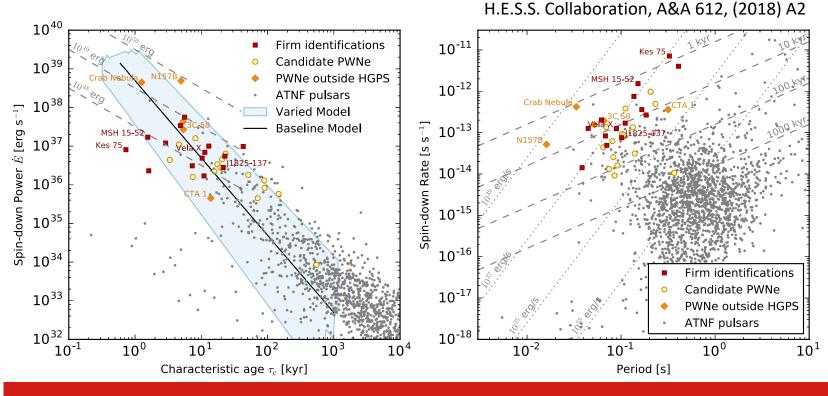


Giacinti et al, A&A 636, A113 (2020)

H.E.S.S.

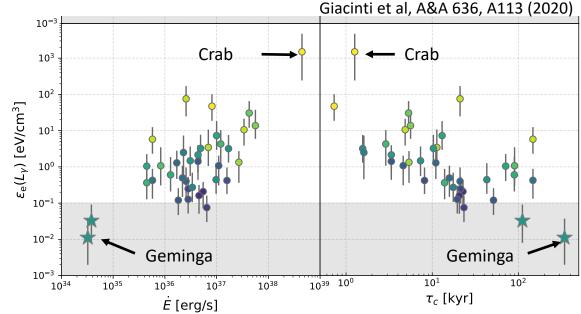
- Array of five IACTs in Kohmas Highlands, Namibia
- CT1-4 108m² mirror area operational since 2004
- CT5 614m² mirror area, constructed in 2012
- Field-of-view: 5° (CT1-4)
- 50 GeV 50 TeV range (c.f. HAWC ~ 1 – 100 TeV)
- ~0.1° angular resolution (c.f. HAWC ~0.2° - 1°)





H.E.S.S. Galactic Plane Survey: PWN population study

- 12 PWN, 8 composite (+5 outside HGPS)
- 36 confused + 11 UNID → more PWNe?
- 20 candidates; tip of the Iceberg?



A. Mitchell . HESS extended emission around middle-aged pulsars. 1st halos workshop. 01/12/20 4

Known PWN / halo population

- Halos as region with energy density far below ISM levels ~0.1 eV/cm-3
- What about other halos?

How to distinguish from PWN?

Non-thermal emission beyond PWN e.g. Sudoh et al, PhysRev D 100, (2019) 043016

Energy density in electrons, pulsar does not dominate dynamics e.g. Giacinti et al, arXiv:1907.12121 → Discussion tomorrow

Known PWN / halo population

- Halos as region with energy density far below ISM levels ~0.1 eVcm⁻³
- What about other halos?
- HAWC J0543+233 around PSR B0540+23 $(E = 4.1 \times 10^{34} \text{ erg s}^{-1})$ distance= 1.56 kpc, τ_c = 253 kyr)
- TeV size ~0.5° (too small?)
- Energy density = 0.6 eV cm^{-3}

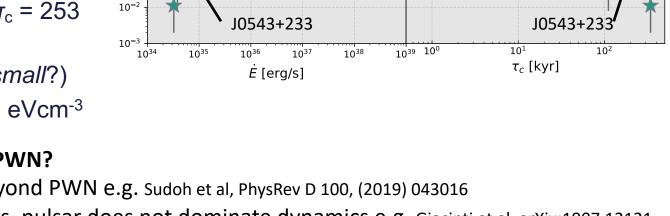
How to distinguish from PWN?

Non-thermal emission beyond PWN e.g. Sudoh et al, PhysRev D 100, (2019) 043016

 10^{-3}

10³

10²


 10^{1}

 10^{-1}

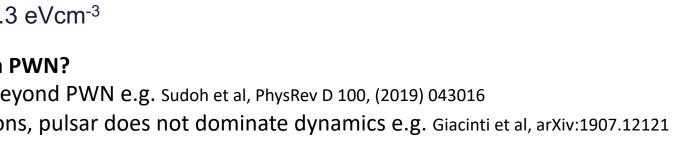
 $\epsilon_{e}(L_{\gamma}) [eV/cm^{3}]$

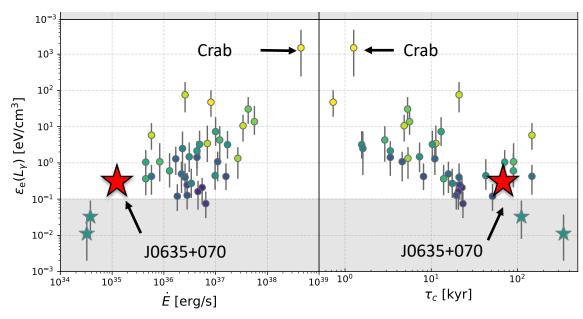
Energy density in electrons, pulsar does not dominate dynamics e.g. Giacinti et al, arXiv:1907.12121 \rightarrow Discussion tomorrow

Crab

Crab

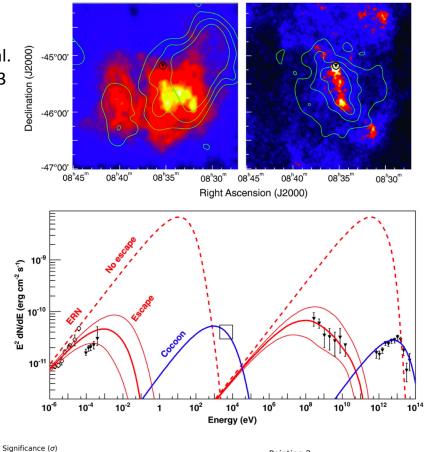
Known PWN / halo population

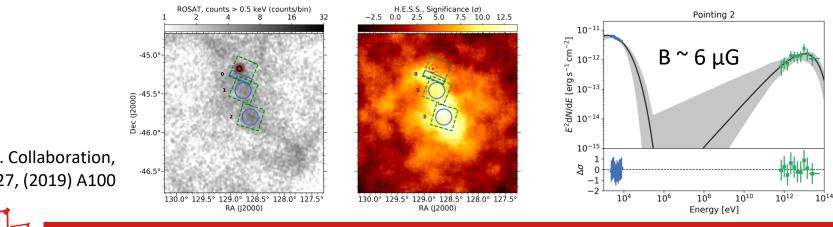

- Halos as region with energy density far below ISM levels ~0.1 eVcm⁻³
- What about other halos?
- HAWC J0635+070 around PSR J0633+0632 $(E = 1.2 \times 10^{35} \text{ erg s}^{-1})$ distance= 1.35 kpc, τ_c = 59 kyr)
- TeV size ~0.65° ± 0.18°
- Energy density = 0.3 eV cm^{-3}


How to distinguish from PWN?

Non-thermal emission beyond PWN e.g. Sudoh et al, PhysRev D 100, (2019) 043016

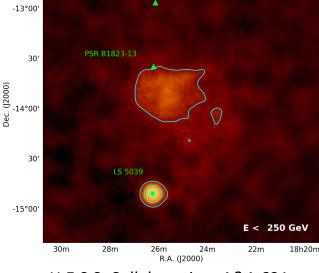
Energy density in electrons, pulsar does not dominate dynamics e.g. Giacinti et al, arXiv:1907.12121 \rightarrow Discussion tomorrow




Vela X

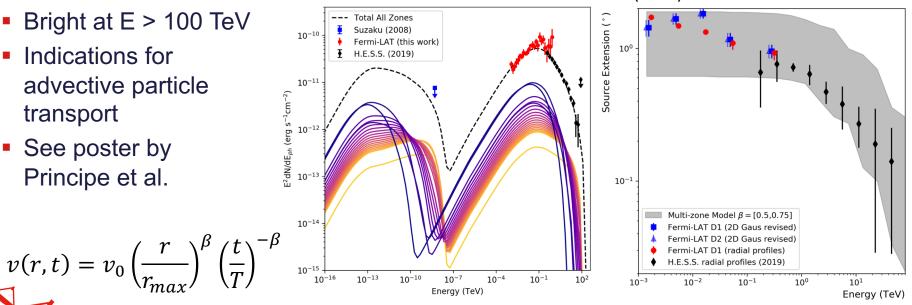
Hinton et al. ApJLett 743 (2011) L7

- Age = 11.3 kyr, log(Edot) = 36.84 erg/s, Distance = 0.28 kpc,
- R: radio = 12.2 pc, X-ray = 3.08 pc, TeV = 2.9 pc
- Escaped particles in extended radio nebula (ERN)
- Indications for advective transport



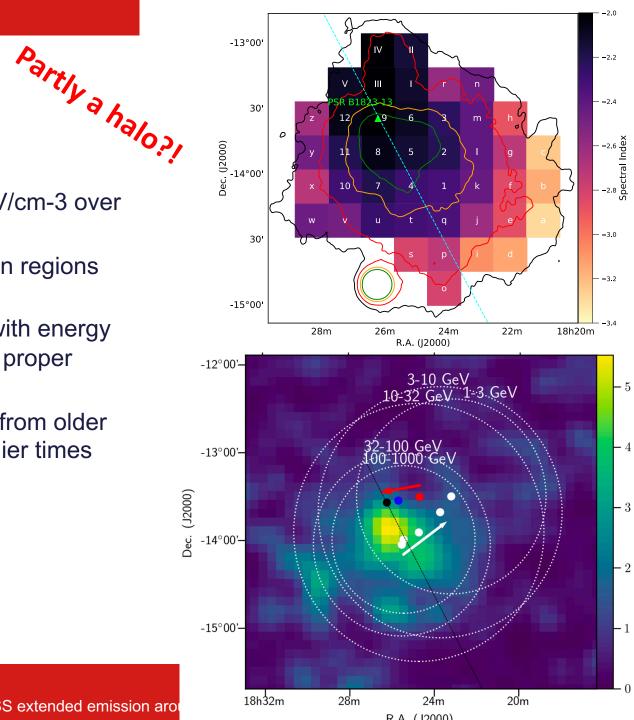
H.E.S.S. Collaboration, A&A 627, (2019) A100

HESS J1825-137


- Age = 21.4 kyr, log(Edot) = 36.45 erg/s, Distance = 3.9 kpc,
- R: radio = 0.4? pc, X-ray = 9.1 pc, TeV = 50 pc
- Strong energy dependent morphology
- Bright at E > 100 TeV
- Indications for advective particle transport
- See poster by Principe et al.

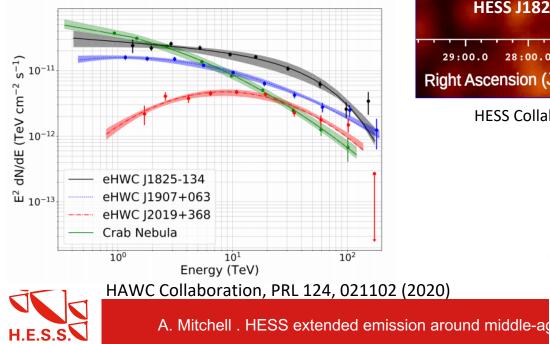
PSR [1826-1256

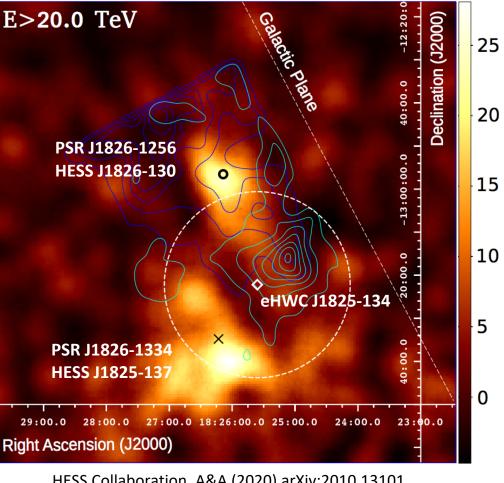
H.E.S.S. Collaboration, A&A 621, (2019) A116

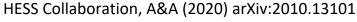

9

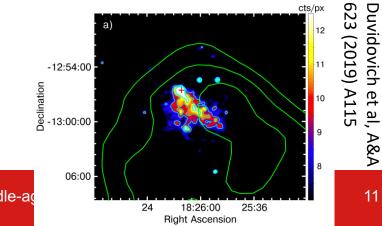
Principe et al. A&A 640, A76 (2020)

HESS J1825-137

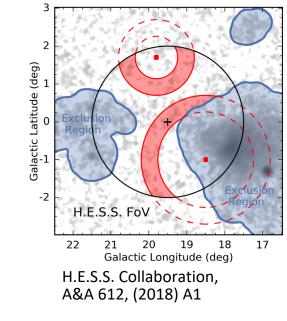

- PWN halo hybrid?
- Energy density ~0.17 eV/cm-3 over whole nebula
- A lot of variation between regions however
- Drift in best fit position with energy corresponding to pulsar proper motion trajectory
- Lower energy emission from older electrons emitted at earlier times

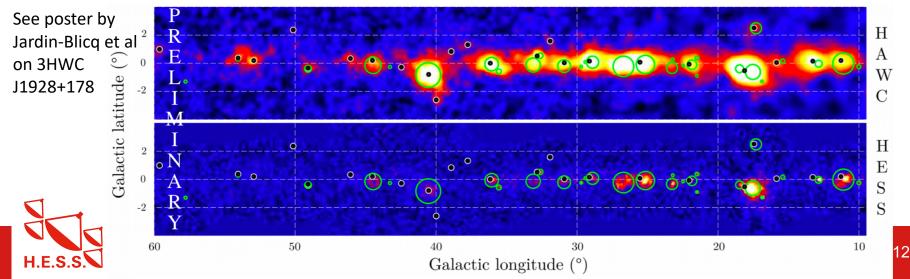





Not a halo! **HESS J1826-130**

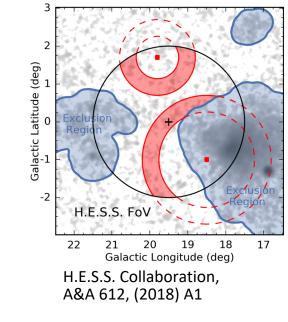
- Age = 14.4 kyr, log(Edot) = 36.56 erg/s, Distance = 1.2 - 3.5kpc,
- R: radio = ? pc, X-ray = 6'x2', $TeV = 0.21^{\circ}$
- Emission from region >100 TeV

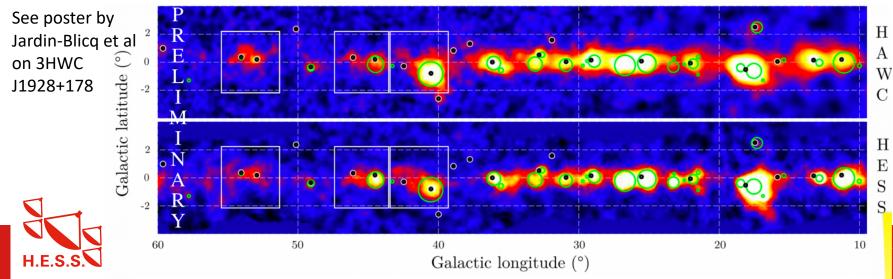




HAWC - H.E.S.S. analysis comparison study

- Recent dedicated effort in understanding analysis differences
- Tested in Galactic plane
- Ring Background: fixed offset from test position, estimate from data outside exclusion regions
- Field-of-View Background: use acceptance map for background estimation, assuming radial symmetry

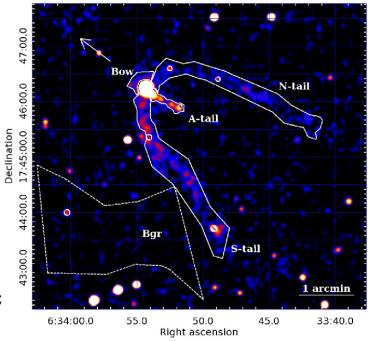




Jardin-Blicq et al ICRC 2019

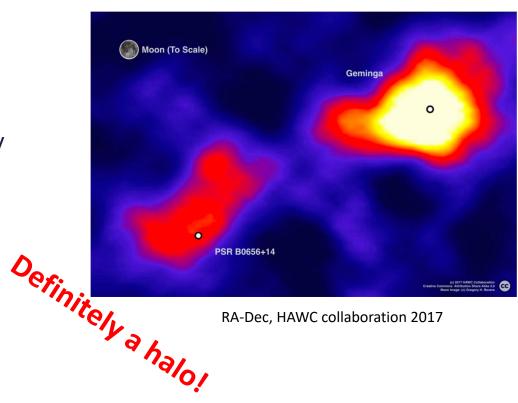
HAWC - H.E.S.S. analysis comparison study

- Recent dedicated effort in understanding analysis differences
- Tested in Galactic plane
- Ring Background: fixed offset from test position, estimate from data outside exclusion regions
- Field-of-View Background: use acceptance map for background estimation, assuming radial symmetry


Jardin-Blicq et al ICRC 2019

The Geminga Pulsar

- Radio quiet pulsar: strong gamma-ray and weak radio pulsed emission
- Gamma-ray pulsar detected (EGRET, MAGIC)
- Age = 342 kyr, log(Edot) = 34.51 erg/s, Distance = 0.25 kpc,
- R: radio = 0.01 pc, X-ray = 0.15 pc, TeV = 100 pc
- Pulsars are copious lepton producers → nearby pulsars could help explain positron excess
- Previous searches for extended emission in gamma-ray and radio
- X-ray and Radio PWN confirmed (on arcsecond arcminute scales)
- Detection of extended gamma-ray emission around Geminga found by Milagro & HAWC
- Challenging for IACTs due to large scale emission



Posselt et al, ApJ 835, 66 (2017)

HAWC detection of extended TeV emission

- HAWC confirms Milagro excess
- Extended emission on ~2° scale
- Low diffusion coefficient inferred by HAWC from radial profile of emission
- For escaped particles in the ISM surprisingly slow
- Would imply Geminga is not local positron source if representative of intervening ISM
- Cool too quickly to reach Earth
- Halo rather than PWN?

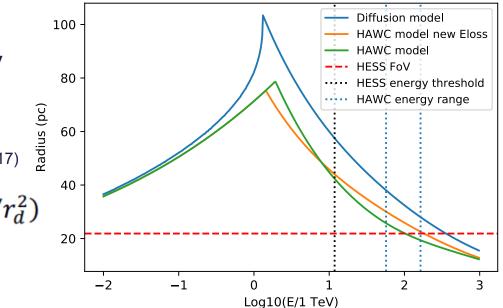
Side note:

PWN are expected to have slow diffusion. The surprise is that diffusion is slow in a region supposedly representative of the ISM.

Diffusion Modelling (S. Caroff)

- Developing model for diffusion with a more accurate energy loss description
- Difference to HAWC approximation becomes significant over HESS energy range
- Model using HAWC derived diffusion coefficient
 → emission radius > HESS FoV
- Approximations used in HAWC collaboration, Science 358, 911-914 (2017)

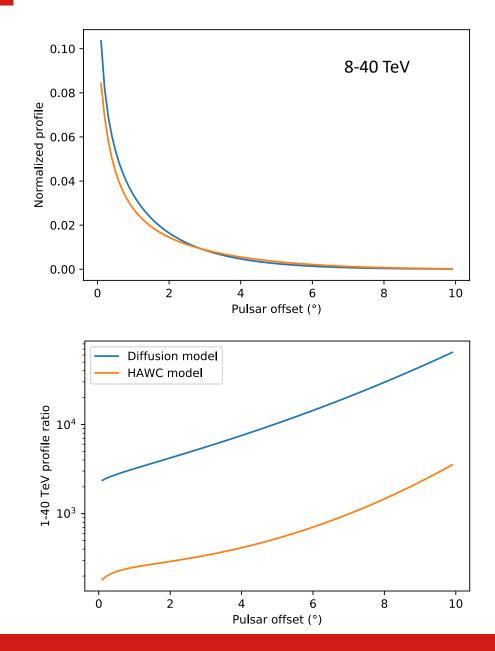
$$f_d = \frac{1.22}{\pi^{3/2} r_d (d+0.06r_d)} exp(-d^2/r_d^2)$$


 $r_d = 2\sqrt{D(E_e)t_E}$

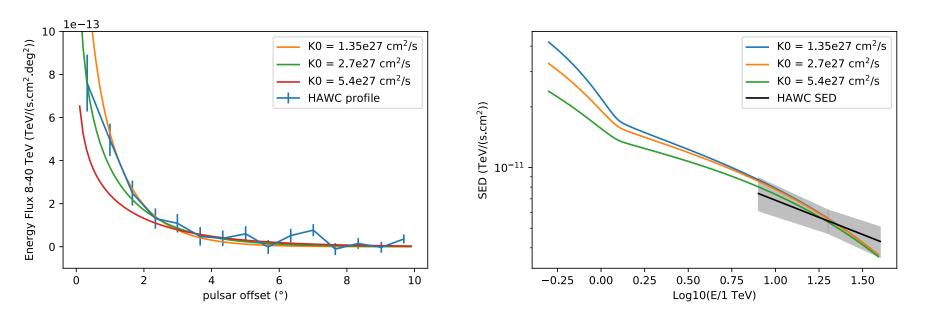
Semi-analytical solution di Mauro et al, PRD 100, 123015 (2019)

$$\mathcal{N}_{e}(E,\mathbf{r},t) = \int_{0}^{t} dt_{0} \frac{b(E_{s}(t_{0}))}{b(E)} \frac{1}{(\pi\lambda^{2}(t_{0},t,E))^{\frac{3}{2}}} \times \exp\left(-\frac{|\mathbf{r}-\mathbf{r}_{s}|^{2}}{\lambda(t_{0},t,E)^{2}}\right) Q(E_{s}(t_{0})),$$
(16)

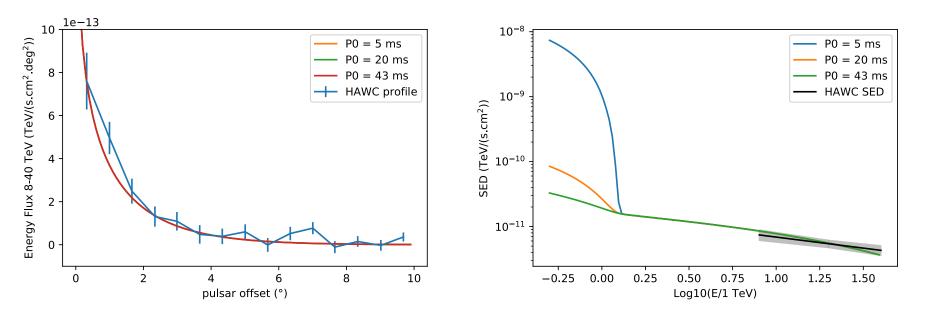
Diffusion radius:


$$\lambda^{2} = \lambda^{2}(E, E_{s}) \equiv 4 \int_{E}^{E_{s}} dE' \frac{D(E')}{b(E')},$$
 (14)

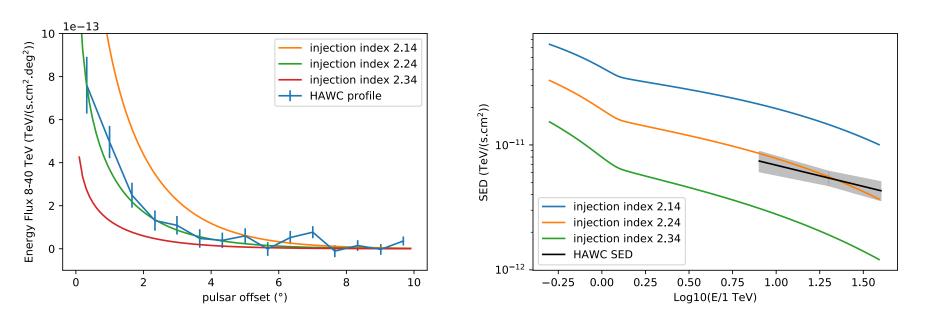
Model comparison


- Different models lead to minor differences in shape
- Give similar results for profile within a single energy bin
- Comparing over a wider energy range, models can lead to significant influence in normalisation
- Full diffusion model mandatory to simultaneously fit multiple energy bins

Parameter influence on model: Diffusion Coefficient


 Variation in K0 does not significantly affect spectral shape

Parameter influence on model: Initial period

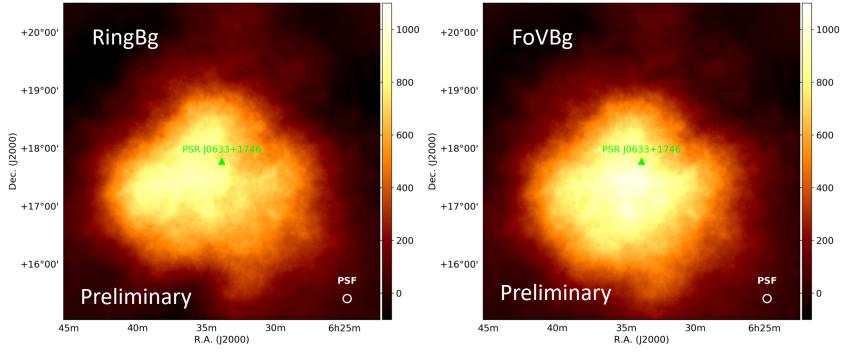

- Initial period does not affect high energies > 1.5 TeV
- Can create an energy break within HESS energy range due to relic electrons produced at pulsar birth
- Break energy depends on pulsar age and electron cooling

Potential influence of proper motion under study

Parameter influence on model: Injection index

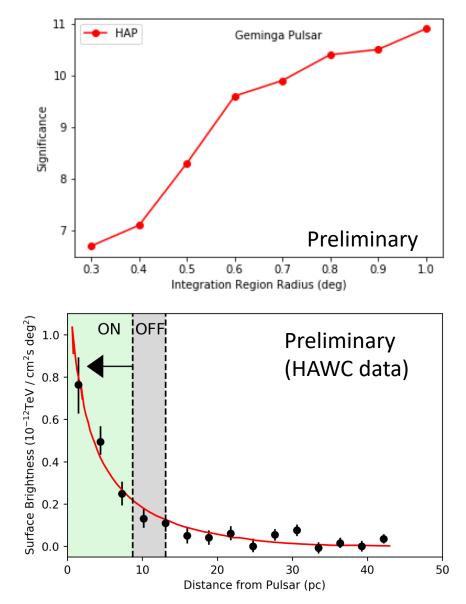
- Injection index affects profile normalisation, SED shape & normalisation
- Pivot energy of injection spectrum is at 1TeV

H.E.S.S. Observations of Geminga 2006-2008


Time PeriodExposureZenith angleNov 20067.7 hours42.2°Jan-Feb 20086.5 hours42.0°

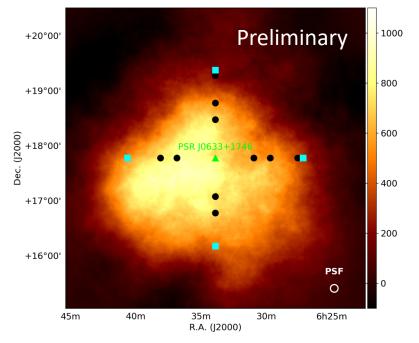
- Data taken in 2006 and 2008
- Observations with H.E.S.S. I telescopes
- 0.5° and 0.7° wobble offset
- 14.2 hours total livetime
- No significant excess seen at the time
- From HAWC spectra, detection should be possible in ~10 hours
- Revisit data applying lessons learnt from HAWC-H.E.S.S. analysis comparison study
- H.E.S.S. analysis with S. Caroff (LPNHE)

H.E.S.S. detection of extended gamma-ray emission (TeVPA 2019)


- Ring background: 10.9 sigma within 1° of pulsar (background estimation includes source events)
- Field of View Background normalise to region outside exclusions.
- Consistent morphology, different normalisation between background methods
- However, background estimation methods may bias apparent morphology

Integration region and angular scale

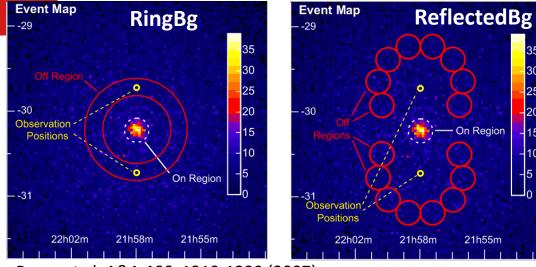
- Significance increases with increasing radius
- Curve does not flatten
- True extent > 1° radius
- Compared to previous searches with IACTs, H.E.S.S. now probes much larger angular scale
- Differential measurements part of significant emission used to estimate background.



See also HAWC collaboration, Science 358, 911-914 (2017)

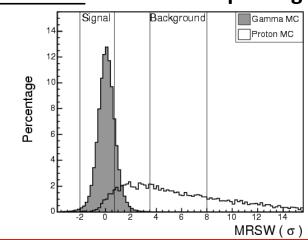
Observations in 2019

- Another 30 hours of observations taken at large offset (1.6° wobble)
- cf. 0.5° 0.7° usual "wobble"
- Analyse with OnOff background method; extragalactic runs as OFF data
- Challenges good run matching selection, background normalisation, acceptance...



Black circles – 2006-2008 observation positions Cyan squares – 2019 observation positions

Background Estimation Methods


- Several background methods used by IACTs
- Which one is most suitable?

Berge et al, A&A 466, 1219-1229 (2007)

	ring	reflected-region	template	field-of-view	ON/OFF
Contemporaneous	Y	Y	Y	Y	Ν
FoV position	Ν	Y	Y	Ν	Y
Sky position	Ν	Ν	Y	Ν	Ν
Event statistics	Y	Y^5	Y	Y	Ν
Event type	Y	Y	Ν	Y	Y

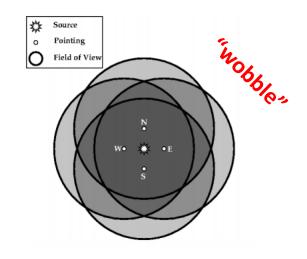
- Source detection? Ring
- Source spectra? Reflected
- Extended source spectra? ON/OFF
- Morphology? Field-of-view

TemplateBg

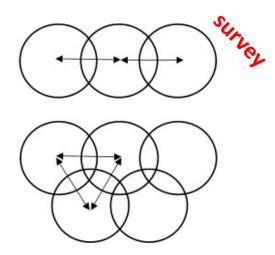
35

30 25

20


15

10

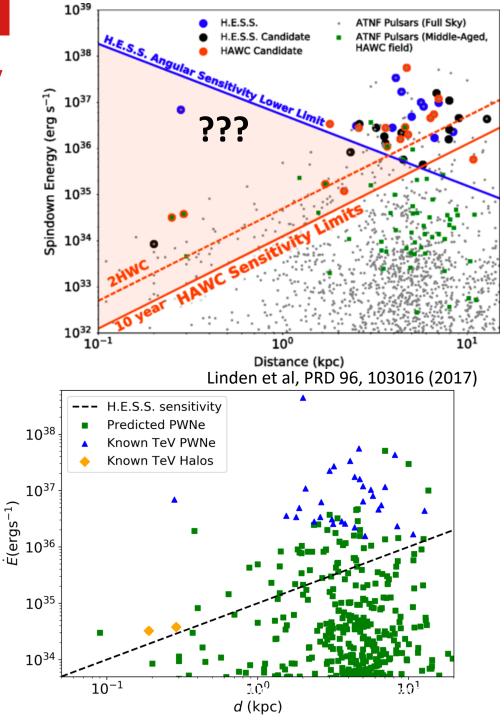

-5

Observation Strategies

- WCD instruments scan whole sky (15% sky field-of-view)
- IACT pointed facilities (3° - 5° field-of-view)
- Need to be offset from source due to radial acceptance
- Observe in "wobble" mode?
- Grid of observation positions (survey)?
- Drift-scan: fixed position and let sky move through camera?
- Analysis can be complex

Kieda ICRC arxiv:1110.5974

Dubus et al. Astropart. Phys. 43, 317-330 (2013)



H.E.S.S. Angular Sensitivity

- Model $\theta_{TeV} = \left(\frac{d_G}{d_{psr}}\right) \theta_G$ based on Geminga with 2° size?
- Impose a limit of 0.6° (c.f. HGPS)
- H.E.S.S. sensitivity is flux limited
- For large sizes, cannot measure size (limited Field of View)
- But detection then depends on analysis technique
- Behaves more like: 1e35 erg/s / kpc^2

A. Mitchell . HESS extended emiss

Candidate targets in the Southern Sky?

- Search ATNF pulsar catalogue for pulsars with suitable properties:
 - \rightarrow no TeV association yet, not considered as a candidate
 - \rightarrow 1e34 erg/s < Edot
 - \rightarrow distance < 2 kpc
 - \rightarrow 20 kyr < age
 - → age < 1000 kyr

Pulsar	(l,b)	Edot (erg/s)	Age (kyr)	Dist. (kpc)	2FGL source?
J1429-5911	(315.26, 1.30)	7.7e35	60	1.96	Y
J1044-5737	(286.57, 1.16)	8.0e35	40	1.90	Υ
J0954-5430	(279.00, -0.10)	1.6e34	171	0.43	Ν
J0940-5428	(277.51, -1.29)	1.9e36	42	0.38	Ν
J1057-5226	(285.98, 6.65)	3.0e34	535	0.35	Y
J0905-5127	(271.63, -2.85)	2.4e34	221	1.33	Ν
J0908-4913	(270.27, -1.02)	4.9e35	112	1.00	Ν
J1549-4848	(330.49, 4.30)	2.3e34	324	1.31	Ν
J1731-4744	(342.57, -7.67)	1.1e34	80	0.70	Ν
J1732-3131	(356.31, 1.01)	1.5e35	111	0.64	Y
J1740-3015	(358.29, 0.24)	8.2e34	21	0.4	N
J1809-2332	(7.39, -2.00)	4.3e35	67	0.88	Υ
J1846+0919	(40.69, 5.34)	3.4e34	360	1.53	γ
J1740+1000	(34.01, 20.27)	2.3e35	114	1.23	Ν

Outlook

- Detecting large, extended sources with IACTs is challenging, but possible
- Good IACT angular resolution investigate sub-structure and morphology
- H.E.S.S. has made detailed studies of several PWNe to date, and can help resolve hybrid / transitional systems
- IACT field-of-view limits ability to measure size of extended sources
- Observation and analysis strategies need to be carefully considered
- Many potential sources in the Southern sky available to H.E.S.S.

Thank you for your attention

Any Questions?

