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Outline

Part 1
I Probability defined by the frequency of repeatable

experiments.
I Probability as the measure of the degree of belief an

individual has in uncertain proposition.
I Example (and Exercises!)

2 Del Prete Outline Part 1



Probability and Statistics

I The theory of Probability is a branch of pure mathematics.
It is based on axioms and definitions. Propositions are
then obtained deductively. The neatest approach is based
on set theory, measure theory and Lebesgue integration.

I The theory of Statistics is essentially inductive and
empirical, since, from the observation of events infers the
value of the unknown parameters and of hypothesis. This
process is similar to what a physicist does when building a
theory from measurements.
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Example: a problem of Probability

Find the probability of observing n heads when tossing a coin
N times, knowing the probability p of landing heads.
The solution is given by the binomial distribution and is:

P(n) =

(
N
n

)
· pn · (1− p)N−n

The result is obtained by a pure deductive method, once the
axioms of probability have been stated.
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Example: a problem of Statistics

A coin is flipped N times and it falls heads n times. What can
we say on the unknown probability p of landing heads?
This is a problem of inference and the answer cannot be as
unambiguous as in the previous example. The main questions
that we shall try to answer are:

I The best estimate of p: p̂ = n/N.
I The precision of the estimate.

I the standard deviation of p̂, but more precisely
I the credible or confidence interval [p−,p+] which contains

the true value of p with some confidence level.
I The data are compatible with the hypothesis that P = α?

Our main tool will be the theory of the Probability.
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What is the Probability?

Probability theory is nothing but common sense reduced to calculation.

(Laplace 1818)

The probability is a number that quantifies the happening of a
random event. The concept has been made more precise in the
course of time, but no definition is yet universally accepted.
Even the previous definition would not be accepted by all
Statisticians. Many would prefer to say: “... quantifies the status
of knowledge of a proposition whose truth we are not sure”.
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The two main Schools I

Frequency theory (R. Von Mieses) It applies to repeatable
events.
We observe an event A occurring n times in N trials, the
probability is defined as the limit:

P(A) = lim
N→∞

n
N
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The two main Schools II

Subjective or Bayesian (F.P. Ramsey, B. De Finetti). It is more
general than the previous definition since it applies also to
non-repeatable experiments.
The probability of an event A to occur (or an uncertain
proposition to be true) is the measure of one’s belief in its
occurring. In this definition the probability loses any objective
content.
However this definition is more general than the previous and
applies also to propositions whose truth we are uncertain.
This is the so called Modern definition. The power and
limitations of this approach will be discusses at length later.
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Frequency Theory

The Frequency theory of probability is based on the empirical
observation that the frequency of occurrence of a random event
(E) shows a remarkable regularity.

In spite of the irregular behavior of the individual events, their
frequency, in a long sequence of random experiments,
performed in uniform conditions, is rather stable and seems to
converge to a constant value as the number of experiments
tends to infinity.

This limit is called probability of the event.

The mathematical abstraction leads to the concept of
probability as a non negative measure of an event PE , in some
space (see later).
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An experiment done in class

I asked students to throw a die several times and measure the
frequency of success; (success: the die lands less then 4.)
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Measuring Probabilities

The Frequency theory of probability offers an operative way of
measuring PE by the limit of the frequency of event f = ν/n in a
long sequence of n experiments. In this way we can verify any
mathematical model of a random process.

P(E) = lim
Ntot→∞

NE

Ntot

The theory relies on two concepts: the random event and the
possibility of performing long run of experiments in uniform
conditions, if not in practice, at least in principle.
P(E) is a property of the system.

11 Del Prete Frequency Theory



Random Event

In principles classical physics is deterministic...

When we flip a coin...

if we would know exactly its starting position,
velocity, angular momentum, coin tensor of
inertia...

Initial
Conditions

If we would know also air temperature and
viscosity, wind velocity, elasticity of the table
where the coin is going to land

Boundary
Conditions

Then we would have a perfectly defined deterministic problem,
we could compute for each flip which would be the result and
we leave no space to the game of chance.
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Random Event

But usually we do not control all the initial conditions and we
know very little of the coin and of the initial and boundary
condition which determines the motion.

A very little change of the initial conditions has a dominating
influence on the result which becomes unpredictable in each
coin flip.

QM events are at all unpredictable, even in principle, and are
the best example of a Random Event.
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Random Event

The result of individual events cannot be predicted with
certainty.
However the situation changes if we study a sequence of
events.
The average of a long run sequence of events performed in
uniform conditions, shows a regular behavior.
Historically this behavior of the frequency was first observed in
the field of the games of chance (coin, dice, cards, etc.). The
frequency of a given result seemed to converge to the same
precise value when the game was repeated very many times.
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The Population

This regularity can be interpreted by considering the samples
as part of a very large parent population.
Consider a town consisting of N individuals.
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The Population

We are interested in some property B of the town’s population
i.e. people higher than 160 cm and we want to know
P(h > 160cm)
In principle we could measure all N people and know the
number NB higher that 160cm.
But this would be expensive and time consuming.
We observe n (� N) individuals (a sample of individual from
the town’s population) and count a number nB of people higher
than 160 cm.
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The Population

The frequency ν = nb/n is a measure of P(h > 160cm), it will
not be exact and it will change if we repeat the sampling.

If the sample size increases, the frequency will tend to the true
value ν∗ = nB/N, since we leave less and less space to the
fluctuation. If we sample the whole population (n = N) then
nb = nB and we have measured the true fraction ν∗.
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Population and Sample

The town’s population:
I The population is characterized by

(unknown) parameters θ1, θ2, · · ·
that we want to estimate from
measurements.

I We sample n elements (we make n
measurements)

I from those we infer the values of
θ1, θ2, · · · .

I Sampling has to avoid bias.

The mathematical abstraction of the real population is a finite
(or infinite) population whose members have a probability
P(X , ~θ).
The parameters ~θ are the subject of our interest.
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Sampling

The sampling is difficult! each element of the population must
have the correct probability of being sampled.

Sometimes a bias is unavoidable. In these cases we have to
know it else the sample is useless and cannot be used to
estimate ~θ.

The methods that we will study are optimal in average
(frequency statistics).
Unfortunately we have only ONE experiment.
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Sampling and parameter estimation

In the long run, we’re all dead.
J.M. Keynes

It is better to be roughly right than precisely wrong

J.M. Keynes

The frequency methods are designed to provide an unbiased
and consistent estimator.

They are based on the assumption of a fair sampling. If the
sample is not fair we must know the bias introduced by the
sampling to proceed to estimation.

In the long run and with a proper sampling, the mean value of
these estimators would converge to the true value of the signal.
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Frequency Theory and Sampling

The properties of the population are the object of the scientific
measurement.
In the example of the town the population was a real entity. The
population is then abstracted to a mathematical object
populated by all the possible events, each in proportion of the
its probability. A measurement consists of drawing a sample
from this population.
The interpretation of probability as the limit of the frequency
gives a degree of reality to those samples that have not been
measured but can eventually be drawn from the population by
virtual experiments.
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In practice

The aim of the frequency statistics is to infer from the data to
the value of the unknown parameters.
This is performed by constructing functions of the data a(~x)
with properties:

I E(a) = θ (unbiased). Repeated measurements should
cluster around the true value of the parameter.

I Var(a) decreases (consistency); the precision increases if
we increase the number of measurements,

I (Sufficiency).
I (Efficiency).

The function a (called estimator) is good in average for all the
samples. It is NOT optimal for the particular sample that we
have made.
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Short Summary (Frequency Theory)

The basic assumptions in the Frequency Theory can be
summarized by the following lines:

I P(A) = limN→∞
N(A)

N
I The limit has to be possible at least in principle. There is

no need to evaluate it, unless we want to measure P(A).
I The probability can be measured directly.
I P(A) is restricted to repeatable experiments.
I P(A) is an intrinsic property of the system. This is why we

can repeat the sampling.
I This probability is the one used in QM:

P(x ∈ S) =

∫
S
| ψ(x) |2 dV
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Subjective Theory I I

A completely different point of view is expressed by a more
general definition of Probability as the degree of belief (Keynes
(1921), Jeffreys (1939), De Finetti (1936)).
According to this theory, to any proposition on which there is no
certainty we associate a numerical value, the probability.
This applies, not only to what we have called random events,
but to any hypothesis, proposition etc, that does not have a
certainty content.
This probability P(E) expresses one’s opinion on the
proposition (E) and depends on the information available to
whoever evaluates E .
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Subjective Theory II

Consider propositions like:
I The mass of the Higgs boson is less than 200 GeV.
I The absolute value of the charge of electrons and protons

are equal.
I I will swim tomorrow

These proposition are uncertain and we can associate a
probability to each of them.
Each of us can have his/her own opinion on the specific topic.
Hence each of us will assign a different probability to each
statement.
Since no objective rule can be constructed to express one’s
opinion, this theory of Probability is called subjective.
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Subjective Theory III

The support of the frequency interpretation to probability is lost.
It is not clear if such probabilities can be empirically verified.
This is the price the has to be payed to extend the concept of
Probability outside the domain of random events.

I There is NO random event.
I There is NO repeated samples.
I The probability is NOT an intrinsic property of the system

but rather it is assigned to the event/proposition by the
observer.

I The probability cannot be measured, it is assigned by the
experimenter.
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Short Summary (Bayes Theory)

The basic assumptions in the Subjective (or Bayes, since it
relies a lot on the use of Bayes theorem) Theory can be
summarized by the following lines:

I P(A) is NOT an intrinsic property of A, it depends on the
state of Information to whoever evaluates P(A).

I It is always conditional to some background information.
I It is used very often in everyday life (...he is probably

right... ...mH is probably less than 200 GeV... etc. etc.)
I Often it is subjective and cannot be falsified.

We will see in short in more details how all this works.

27 Del Prete Summary of Subjective Probability



Outline

Part 3
I Abstract probability.
I Bayes theorem.
I How Bayes statistics works.
I Example (and Exercises!)
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Mathematical Probability

Fortunately both definition of probability (from the Frequency
and Subjective schools) are fitting in the abstract definition of
probability given by Kolmogorov.
Assume that in a given experiment the possible outcomes are:

{e1 e2 · · · }

For instance if we throw a die the possible outcomes are:

{1 2 3 4 5 6}

Each ei is called an elementary event. The collection of all ei is
called sample space (S).
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Mathematical Probability

We shall use the language of set theory:
an event E is a subset of S, i.e. the ensemble of elementary
events that share the same property.

E ≡
⋃
{k}

ek

Example

In a dice game E = die lands even than E = {2,4,6}.

Class of E : it is made by subsets of S. There is no need to
define the class of events of as the ensemble of all subsets of
S. This generates often mathematical monstrosities.
→ Use the smallest event space compatible with our problem.
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Exercising with events

Example

In the previous exercise, let us use an “Indicator” to avoid non
numeric symbols: I = 1 if H, 0 if T . If we flip the coin n times
the outcome is a ordered sequence of “0” and “1”.
The sample space is Sn = S1 ×S1 · · ·S1 and is composed of all
possible ntuples of “1” and “0”; its dimension is 2n.
If we write the outcomes as 0 and 1, in order, at the right of the
decimal point, then each event is represented by a rational
number (in binary) in [0,1]:

si = 0.00110... there are 2n of such numbers

If we let n→∞. The number so constructed is a real number.
Continuous variables belongs to infinite dimensional sample
space.
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Exercises!

In many instances it is possible to enumerate all possible
events (N) and also those in which E occurs (m). If all the
cases have the same probability, than the probability of the
event E is P(E) = m/N.

Exercise
What is the probability that throwing n times a die we get at
least once 6?
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The algebra of sets

Let us start from the set of elementary events:
S ≡ {sample space}. We will call event class E the set of all
subsets of S having the following properties (closure under
union):

I S is in E, S is an event.
I If A is in E, also A is in E.
I If A1,A2 · · · are in E then also their union (

⋃
n An) is in E.

I If A1,A2 · · · are in E then also their intersection (
⋂

n An) is in
E. (This is a consequence of the two previous properties.)

An event class is also called a sigma algebra or a sigma field or
a Borel field. The elements of E are called events.
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The metrix on the sets

On this structure (the sample space S and the event class E)
we define, for each A in E a non negative measure P(E) called
probability with the following properties (axioms):

I ∀ A ⊆ E 0 ≤ P(A) ≤ 1
I The probability of occurrence of any event is one:

P(S) = 1.
I ∀(Ai ,Aj) ⊆ E : Ai

⋂
Aj = 0 (i 6= j) P (

⋃
i Ai) =

∑
i P (Ai)

(countable additivity).
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Exercises!

Exercise
With the use of the axioms and the properties of set theory
prove: :

I ∀A ⊆ S : P(A) = 1− P(A)

I If B ⊆ A then P(B) ≤ P(A)

I ∀A,B ⊆ S : P(A ∪ B) = P(A) + P(B)− P(A ∩ B)
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Conditional Probability

Suppose A, B ⊆ S with probabilities P(A) and P(B). Suppose
that we know that A is true. In this case the probability of B is
relative to the sample space A. This new probability will be
called conditional probability. The following Venn diagram
illustrates the meaning of conditional probability.

P(A) =
NA

N

P(A ∩ B) =
NC

N

P(B|A) =
NC

NA

P(B|A) =
P(A ∩ B)

P(A)
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Independence

If the knowledge that the event E1 has occurred does not affect
the probability of event E2, E2 is said to be independent of E1.
Then, for independent events:

P(E2|E1) = P(E2) hence
P(E1 ∩ E2) = P(E1) · P(E2)
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Conditional Probability

Example

A card is drawn from a pack of 52.

P(A) = P(an ace) =
4

52
and

P(B) = P(a spade) =
13
52

Since P(ace of spade) = 1/52 = P(A) · P(B), the events are
independent.

Exercise
We throw two dice. What is the probability that the sum is 9, if
the first die gave 5?
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Exercise
Consider two events A and B. We know that:

P(A) = 0.1
P(B) = 1.0

are they independent?

Exercise
Consider two events A and B which are mutually exclusive. Are
they independent?

Exercise
If A ⊆ B what is P(A | B) ?
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Is it so simple and clear?

Exercise
A friend of mine has two children. One is male. What is the
probability that both are male?
(The probability that a child is male is roughly equal to the
probability to be a female)
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Is it so simple and clear?
The prosecutor fallacy: the Sally Clark case

Sally Clark, a British woman, was accused in 1998 of having
killed her first child at 11 weeks of age, then conceived another
child and allegedly killed him at 8 weeks of age.
The defense claimed that these were two cases of sudden
infant death syndrome.
The prosecution had expert witness Sir Roy Meadow testify
that the probability of two children in the same family dying from
sudden infant death syndrome is about 1 in 73 million.
Based only on this probability statement, Mrs Clark was
convicted in 1999.
The Royal Statistical Society, in a press release, pointed out the
mistake.
A higher court later quashed Sally Clark’s conviction but on
other grounds, on 29 January 2003.
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Is it so simple and clear?
The prosecutor fallacy: Sally Clark case (cnt.)

The argument can be analyzed using conditional probability. let
us call:

I E= the observed evidence;
I I= the accused is innocent;

Hence:
I P(E |I) is the probability of the evidence if the accused is

innocent; this is the quoted 1/73 millions.
I P(I|E) is the probability that the accused is innocent given

the evidence.
The prosecutor wrongly confuses P(I|E) with P(R|I), two rather
different concepts. We will need Bayes theorem to compute
one from the other. (We will resume later the discussion on
Sally Brown case.)
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Is it so simple and evident? The Monty Hall Problem I

Monty Hall problem involves a classical game show situation
and is named after Monty Hall, the long-time host of the TV
game show Let’s Make a Deal.

There are three doors labeled 1, 2,
and 3. A car is behind one of the
doors, while goats are behind the
other two: The rules are as follows:

I The player selects a door.
I The host selects a different door and opens it.
I The host gives the player the option of switching from her

original choice to the remaining closed door.
I The door finally selected by the player is opened and she

either wins or loses.
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Is it so simple and evident? The Monty Hall Problem II

You can either change the door or keep the door you selected
first. The aim is to optimize your chances of winning the car.
At the beginning of the game nothing is known of the “good”
door and your chances were 1:3.
After the host has made his choice you should know something
more...
(The problem was first proposed as three box paradox by J.
Bertrand (1889), and then as the three card paradox by W.
Weaver (1950).)

Try to work out the solution by yourselves first, we will discuss
the solution of the problem off-line during our coffee-break!
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Bayes’ Theorem

We have seen how to compute the conditional probability
P(A | B), the probability of A knowing that B has occurred.

How can we express P(B | A) using the knowledge of
P(A | B)? i.e. how can we interchange the A with B in the
conditional probability?

The solution of this problem is due to Rev. T. Bayes at the
beginning of 17th century and mathematically it is a simple
manipulation of conditional and marginal probability.

However the interpretation of Bayes work is subtle and points to
fundamental concepts at the basis of the probability theory.
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Bayes’ Theorem

Assume that the sample space S is divided among n mutually
exclusive subsets Bi .

∀
(
Bi ,Bj

)
⊆ S Bi

⋂
Bj = 0 i 6= j disjoint sets⋃

i Bi = S complete sets

then:
n∑

i=1

P(Bi) = 1

If A is also a set belonging to S then:

P(A ∩ Bi) = P(Bi | A) · P(A) = P(A | Bi) · P(Bi)

hence:
P(Bi | A) =

P(A | Bi) · P(Bi)

P(A)
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Bayes’ Theorem

Given the definition of Bi we have (marginalization):

A = A
⋂(⋃

j Bj

)
=
⋃

j
(
A
⋂

Bj
)

union of disjoint sets

P(A) =
∑n

j=1 P(A ∩ Bj) =
∑n

j=1 P(A | Bj) · P(Bj)

Finally:

P(Bi | A) =
P(A | Bi) · P(Bi)∑

j=1,n P(A | Bj) · P(Bj)

This is Bayes theorem.
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A classical example I

Each of three urns U1, U2 and U3 contain two coins. The first
urn contains two gold coins, the second urn one gold and one
silver coin and the third two silver coins.
We choose an urn at random and take a coin. It is a gold coin.
This event has increased our information on which is U1.
Let us use Bayes Theorem!
The event Ui ≡ the chosen urn UM = Ui

P(Ui | A) =
P(A | Ui) · P(Ui)∑
i P(A | Ui) · P(Ui)
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A classical example II

I A (event) pick up a gold coin.
I P(A|Ui) is called Likelihood. By construction:

P(A | U1) = 1
P(A | U2) = 1/2
P(A | U3) = 0

I P(Ui) are called prior probabilities,
I P(Ui |A) are the posterior probabilities (improved

information on which is urn 1).
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A classical example III

We have to know the prior probabilities before we can apply
Bayes theorem.
Since the urns are selected at random, it seems reasonable to
put: P(Ui) = 1/3 (Bayes postulate), hence:

P(U1|A) =
1 · 1/3

1 · 1
3 + 1

2 ·
1
3 + 0 · 1

3

=
2
3

P(U2|A) =
1
2 ·

1
3

1 · 1
3 + 1

2 ·
1
3 + 0 · 1

3

=
1
3

P(U3|A) = 0

The urn that we have randomly selected and in which we have
found a gold coin has the larger probability of being U1.
The observation has changed the prior probabilities and we
have gained information on the system.
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A HEP application of Bayes theorem

A beam of particles contains pions and electrons. A detector is
designed to respond to π and e with a hit with:

π , e

hit

DETECTOR P(hit | e) = 0.9
P(hit | π) = 0.05

A particle enters the detector and produce a hit. What is the
probability it is an electron?:

P(e | hit) =
P(hit | e) · P(e)

P(hit | e) · P(e) + P(hit | π) · P(π)

To compute P(e | hit) we have to know P(π) and P(e), the
priors (i.e. the beam composition).
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Interpretation

The characteristics of the detector are not enough to identify
the incoming particle. We have to measure the beam
composition with an ancillary experiment.
(If only 5% of the beam would be electrons, π and e would
produce hits with the same rate, overcoming the different
sensitivity of the detector to π and e.)
Finally we shall have P(e | hit). How do we interpret this
quantity?
Assume P(e | hit) = 0.75. Since the incoming particle is either
an electron or a pion we might rephrase this number saying
that, in average, in a sample of 100 hits, 75 will be electrons
and 25 pions.
(This interpretation has a rather frequentistic flavor...)
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Another application of Bayes theorem

Example

0.1% of the population is affected by AIDS. A test identifies sick
persons with a probability of 0.98. The test gives a positive
result in a sane person in 3% of cases.
You pass the test with positive result. What is the probability
that you are really affected by AIDS?

P(A) = 10−3

P(A) = 1− 10−3

P(T | A) = 0.98
P(T | A) = 0.03

P(A | T ) =
P(T | A) · P(A)

P(T | A) · P(A) + P(T | A) · P(A)
= 0.032

A failure of the computerized diagnostic?
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Interpretation

The prior P(AIDS) is the key to understand this apparent
paradox.
We have used the value averaged on all the population and,
since most of the persons are sane, we have found a probability
very near to the probability that the test fails (P(T | A)).
However if a person undertakes an AIDS test, there are
probably other symptoms or suspects, such that the prior to be
used will be much larger that the average on all the population
and the outcome of the test will be much more meaningful.
The use of Bayes theorem depends critically on the prior.
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Exercise

However...

Exercise
You repeat a second time the test and again the test is positive.
Compute the probability of being sick P(A | TT ).

Note: P(A | TT ..) improves the knowledge on the status of the
individual. The same results would be obtained also in the
previous example (π e discrimination) by adding another
detector and using the posterior probability of the first as prior
to the second.
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The problem of priors

To apply Bayes theorem we need to know the prior
probabilities. Suppose we are not told the method to select the
urns in the previous problem, then we would not know P(Ui).

I How do we compute the prior probabilities that correspond
to our knowledge?

I Or, even more difficult, to convey our ignorance?
It seems that there is no general satisfactory answer to this
second question.
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Another example (1)

Example

A box contains 3 balls either black or white. We make three
extraction with replacement. The three extracted balls are
white.
What is the probability that all the 3 balls in the box are white?

Let us call:
I H: the 3 balls in the box are white.
I E : the 3 independent extractions give 3 white balls.

First problem: H is not a random variable, rather it is a fact: the
composition of the box:
P(H) is either 1 or 0 depending on which balls were put in the
box, but we do not know which one is true!
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Another example (2)

We can recover somehow the probability concept by imagining
that we have chosen the actual box among a collection of
boxes with different mixtures of white and black balls.
P(H) is then the probability of having chosen the box with 3
white balls.
Second problem: How is constructed the collection of boxes?
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Another example (3)

Quantum balls

{W W W}
{W W B}
{W B B}
{B B B}

Classical balls

{W W W}
{W W B} {W B W} {B W W}
{W B B} {B B W} {B W B}

{B B B}

The problem is substantial: you have to know which is the
collection.

Exercise
Work out the posterior probabilities using both collections of
boxes.
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Bayes and Sally Clark case

Back to Sally Clark case. The Bayes formula is needed to
compute P(I | E). We will see it is not so easy... We have
called:
E = the observed evidence, I = Sally is innocent

P(I | E) =
P(E | I)P(I)

P(E | I)P(I) + P(E | Ī)P (̄I)

P(I) can be estimated from the frequency of those crimes in the
population. In those years England and Walls reported 30
children killed by mother on 640000 births.
P(I) = 1− 30/640000 = 1− 5 · 10−5. Also P(E | Ī) ≈ 1. Thus:

P(I | E) ≈ 10−8 · 1
10−8 · 1 + 1 · 10−5 ≈ 10−3

Small but not so small.
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Bayes Theorem and the Subjective Probability

The Bayesian interpretation of probability is NOT based on the
empirical evidence of random events and the stability of their
frequency in a long sequence of experiments; rather it is
epistemological and considers propositions on which we do not
have certainty.
Though there is not certainty, still a proposition can appear
more or less plausible.
The probability is a measure of this plausibility and it is
expressed as a real number that we can take in the interval
(0,1).
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Bayes Theorem and the Subjective Probability

Both interpretations of probability already existed at the
beginning of the theory of probability, in the middle of
seventeenth century:

I the empirical based on the frequency of random events,
widely used in the games of chance,

I the epistemological based on our (incomplete) knowledge
of facts or propositions; the name of probability has even
its etymology in the Latin word probus: praised by a wise
person and shows that the cognitive meaning of the word
is very rooted in the logic of everyday experience.

These so different concepts should deserve different names!
Many complications arise by the use of the same word for
different concepts!
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What (probably) Bayes wanted...

Rev. Bayes (1763) knew the answer to the problem:
In a Bernoulli trial of N with probability p what is the probability
of n successes?
If p is known the answer is the Bernoulli formula P(n | p,N).
But, if p is unknown and, in the experiment we have measured
n, what can be said of p?
Bayes theorem suggests the answer:

P(p | n,N) ∝ P(n | p,N) · P(p) Inference on p

However there are two conceptual problems:
I How can we talk of P(p | n,N), since p is a constant?
I What is P(p) (the prior)?

63 Del Prete Bayes Statistics



What (probably) Bayes wanted...

Bayes could give a meaning to P(p | n,N): since p is unknown,
it is subject to probabilistic analysis.
This idea was already elaborated by Leibniz, among the others.
P(p) is a way of quantifying our personal believe on the value
of p, before the measurement. This belief is modified by the
experiment leading to P(p | n,N).
Different persons can have different opinions and hence
different P(p); hence different P(p | n,N).
The probability is not a property of the system, but depends on
the information available to the experimenters.
In this scheme no frequency interpretation of P(p) is possible,
and no MEASURE of p by the experience.
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The problem that stopped Bayes from publishing his theorem
was how to convey our complete ignorance of p in the
mathematical expression of P(p).
Bayes’ naive solution to consider all the possibilities as equally
probable leads to inconsistencies.

I A parameter θ can take any of the values: θ1, θ2, · · · , θk
with k ≥ 3.

I Nothing is new on θ hence: P(θ) = 1/k .
I Be φ such that φ = 1 if θ = θ1 and 0 in any other cases.

Being ignorant on θ we are also ignorant on φ, hence
P(φ) = 1/2.

I However the two priors:

P(θ) =
1
k

and P(φ) =
1
2

are clearly inconsistent.
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In fact this problem is one of the most difficult of the Bayesian
statistics and after more than two centuries still lacks of a clean
solution.
The use of Bayes theorem is the basis of Bayesian statistics.

I P(E) is not an intrinsic property of E but depends on the
state of information available to whoever evaluates P(E)
(D’Agostini, 1999)

I Hence it is always conditional to some background
information I we should always write P(E | I).

I It is very often used: It is probable that the mass of Higgs
boson is larger than 100 GeV, probably tomorrow it will
rain etc.

I Since it is subjective, cannot be verified of falsified.
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Bayes Inference in Binomial Experiment

Bayes Theorem:

P(θ | D, I) ∝ P(D | θ) · P(θ | I)

D is the data, I is the background information, P(D | θ) is the
binomial formula.
Assume a flat prior P(θ | I) in a Binomial experiment: flip a coin.
θ is the probability of H
Bayes formula will update the information at each experiment:

P(θ | noData, I) = P0(θ | I) = 1 uniform prior
P(θ | H, I) ∝ θ

P(θ | H,H, I) ∝ θ2

P(θ | H,H,T , I) ∝ θ2(1− θ)

· · ·
P(θ | nN,mT , I) ∝ θn(1− θ)m
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The posterior density after each measurement
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The plots are the posterior density after each measurement.
Also shown the 68% Credible Intervals.
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The Likelihood is all what we need

Actually it is not necessary to use Bayes formula at each
experiment, we can use the Bernoulli formula as Likelihood
directly:

P(θ | D, I) ∝ K · θH · (1− θ)T

The normalization K depends on the number of Heads and
Tails (data) but not on the parameter hence it is irrelevant for
Bayes Statistics.

I The maximum of the density (mode):

θmode =
H

H + T

I The mean is:

θ =

∫ 1

0
θ · P(θ | D, I) dθ =

H + 1
H + T + 2

=
H + 1

Ntot + 2
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Few comments

I We started from an uniform prior and, after a few
experiments we lose track of the prior and are driven
mainly by data. (D’Agostini: Overcoming prior anxiety
(1999)).

I However in case of frontier physics, when only few events
will be available the dependence from priors (or theoretical
prejudices) can be very annoying.

I The mean is NOT the same object as in classical statistics;
it is not the average over many experiments (over sample
space), a concept unknown to Bayes school. It is the
average over the posterior obtained by the experiment just
performed.

I The Bayes mode coincides with the mean over sample
space only because we have used a flat prior.
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More comments

In Bayes Statistics all the information on the system is
contained in the Likelihood.
The Likelihood is a function which describe mathematically the
system with the measured data. Any inference must proceed
through the Likelihood and the available prior which should
consider any background information.
We must draw the same inference from two experiments having
the same likelihood
Hence Bayes Statistics rejects the idea of the virtual repetition
of experiments (no random events!). In fact these are not
measurements and do not bring any information on the system
and must not be considered
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More comments

The analysis will produce a Posterior Probability density for the
parameter θ. The posterior conveys all the information on the
system.
Summary information (i.e. the point estimate) is produced using
decision theory by minimizing a loss function. Loss functions
are subjective; frequently used is a quadratic loss function
which produces an estimate of the parameter equal to the
mean. The mean is the average of the density of the
experiment just performed. (Average over the parameter
space.)
The analysis is, in a sense, optimized to the particular results
obtained in the experiment. This contrary to the Frequency
school whose methods work well for any sample (Average on
sample space)
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Least Informative Priors

The priors, mainly in case no prior information is available, is a
delicate point in Bayes analysis.
If prior information exist, Bayes analysis will automatically
provide the update of the previous information with the new
data.
But if no information exists we should resist to the temptation of
injecting in the analysis our prejudices or sympathies.
We should (at least in Physics) use priors which do not
influence, or influence little, the posterior. We should let data
speak by themselves!
This is mainly true in case of frontier experiments where data
are few and we cannot rely too much on the independence from
the prior of the large statistics.
There comes the problem of the so called least informative
priors.
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Least Informative Priors

The flat prior is not the only choice, in case of absence of any
information before we do the experiment. The flat prior is very
intuitive but there are other considerations.

I If the probability concerns a bounded parameter, whose
scale is not known (i.e. the length of a fish that could be a
whale or a sardine), the LIP should be invariant in a
change of scale like θ → k × θ. (I want to be ready with my
prior to any size of object to measure, before I know the
subject of my investigation.)

P(θ | I)dθ = P(k · θ | I)d(k · θ) = k · P(k · θ | I)dθ

hence:
P(θ | I) ∝ 1

θ

This is the so called Jeffreys’ prior.
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Least Informative Prior

I If, on the contrary, a parameter is unbounded and we are
interested in the location of the parameter, then, for the
same argument, the LIP should be invariant under the
transformation θ → θ + a.

P(θ | I)dθ = P(θ + a | I)d(θ + a) = P(θ + a | I)dθ

hence:
P(θ | I) = constant

and we recover Bayes prescription.
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Binomial model with constant and Jeffreys prior

Posterior density depends on the prior, but with increasing data
it loses memory of the prior.
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Bayes: search theory
The case of SSN Scorpion

May 1968, SSN-589 failed to arrive to her home port in Virginia.
First search failed to locate the wreck. A second search was
organized adopting a Bayes search method.

The expected region of the loss
was divided into grid squares (1
mile). In each square two
probability were assigned:
p = P(wreck ∈ square),
q = P(find the wreck | wreck)

Needed priors were obtained by submarine specialists, experts
in deep water recovery, submarine commanders.
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Bayes: search theory
The case of SSN Scorpion

The sea around the Azores was searched starting from the
square with larger probability (total probability is P=p q)

Each time a square was
unsuccessfully searched the
probability of the square
p → p(1−q)

(1−q)p+(1−p)

and all the squares
probabilities were
reassessed upward.

The use of this approach was a major computational challenge
for the time, but it was successful: the Scorpion was found after
five months.
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Bayes: search theory
The case of SSN Scorpion

For your curiosity, Bayes theorem works like that, in this case:

A = event : the wreck is in square i
B = event : the wreck is found

P(A | B̄) =
P(B̄ | A)P(A)

P(B̄ | A)P(A) + P(B̄ | Ā)P(Ā)

=
(1− q)p

(1− q)p + 1(1− p)

The priors have been obtained from the experience of people
working in the field and by considering several plausible
scenarios for the wreck worked out with with Monte-Carlo
calculations.
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Outline

Part 3
I Two sampling theorems.
I Parameter estimation (frequency).
I Compare Bayes and frequency methods.
I Example (and Exercises!)
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Back to Probability and Sampling (Frequency)

Let us now discuss two important theorems in the theory of
Probability which are very relevant in the Frequency School of
Statistics:

I The Law of Large Numbers,
I The central Limit Theorem.

We shall not give any proof, only state the theorems and give
examples.
These two theorems are very important in Frequency inference.
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The Law of Large Numbers (LLN)

Let us consider n repeated measurements (x1, x2 · · · xn) of a
random variable

X ∼ f (x | µ) µ is the finite mean and define: x =

∑
xi

n

lim
n→∞

P(|x − µ| ≤ ε) = 1 (∀ε > 0)

The sample mean converges, in probability, to the mean of the
population.

x
p−→ µ

The theorem is true even if f (X |µ) has no variance.
This is the weak law of large numbers.
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The Central Limit Theorem

Consider a variable X ∼ f (x | µ · · · ), with mean and variance:
E(X ) = µ Var(X ) = σ2, both finite
The the distribution of the sample mean (x ∼ g(x | µ · · · ))
approaches the normal distribution with mean µ and variance
σ2

N as N →∞.

lim
N→∞

g (x ;µ, σ,N) = N
(
µ,
σ2

N

)
g is the finite sample size density of x which depends on the

density of X .
Asymptotically g(x |µ) becomes normal.
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Example of the Central Limit Theorem
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Example

My wrist watch (an old mechanical one!) in average does not
systematically advances or delays, but randomly makes an
error of 1/2’ per day. What is the probability that in one year the
error is less than ±5’ ?

X (daily error) ∼ U(−1/2,+1/2)
E(X) = 0
Var(X) = 1/12

r =
365∑
i=1

xi is the error in one year:

P(|
∑

xi | ≤ 5′) = P(−5 ≤
∑

xi ≤ 5) = P(− 5
365

≤
∑

xi

365
≤ 5

365
)

Thus, by CLT:

P(− 5
365

≤ X ≤ 5
365

) ≈
∫ 5/365

−5/365
N(0,

1
12 · 365

)dx ≈ 0.63
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Estimation

We now discuss a few examples of non standard estimation. I
hope that in this way you can grasp better the statistical
principles of parameter estimation.
These principles are often hidden by the known methods (LSQ,
Max Likelihood)
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The German tanks problem

This happened really during WW2. It was a job of British
statistician to estimate the number of German tanks from the
debris of the tanks destroyed in battle.

(The same methods were used by Germans to estimate the
production of arms by Soviets, by Japanese for the US weapon
production... )

Also intelligence had its estimates, based on other, less evident
methods.
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The German tanks problems

During World War II, information about German war potential
was essential in order to schedule the time of invasions and to
carry out the bombing program.

In order to obtain reliable estimates of German war production,
experts started to analyze markings and serial numbers
obtained from captured German equipment.
Each piece of equipment was labeled with markings, which
included

I (a) the name and location of the maker;
I (b) the date of manufacture;
I (c) a serial number;
I (d) miscellaneous markings such as trademarks, mold

numbers, casting numbers, etc.
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The German tanks problem

The serial numbers on tanks are numbers running from 1 to
some unknown largest number N.
What we know is a subset of n numbers of this set obtained
from destroyed or captured tanks {x1, x2 · · · xn}

This dataset is modelled as a realization of random variables
X1,X2, · · ·Xn representing n draws without replacement from
the numbers 1, 2,· · ·N with equal probability.

Sample Space 1, 2, 3, 4, · · · N
Data set X1, X2, · · · Xn

The objective is to estimate the total number N on the basis of
the observed serial numbers.
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The estimators

We propose two unbiased estimators. The first one is based on
the sample mean

X̄n =
X1 + X2 · · ·+ Xn

n

and the second one is based on the sample maximum

Mn = max {X1,X2, ...,Xn}
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Estimation based on sample mean

To construct an estimator based on sample mean, we start by
computing the expected value of the sample mean

E
(
X̄n
)

=
E(X1) + E(X2) + · · ·+ E(Xn)

n

This can be easily computed since P(Xi = k) = 1/N for all k .

E(Xi) =
∑

k

k
1
N

=
1 + 2 · · ·+ N

N
=

N(N+1)
2
N

=
N + 1

2
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Estimation based on sample mean

Thus:

E
(
X̄n
)

=

∑n
i=1 E(Xi)

n
=

N + 1
2

This directly implies that

T1 = 2X̄n − 1

is an unbiased estimate of N

Exercise
Verify that E(T1) = N
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Estimation based on sample maximum Mn

The calculation of this statistics is a bit more elaborated.

The number of ways to draw n numbers out of N is
(

N
n

)
and

each combination has the same probability
(

1/
(

N
n

))
In order to have Mn = k , one label must be equal to k and all
the rest of the sample (n − 1 numbers) out of the numbers
1,2, · · · k − 1.

There are
(

k − 1
n − 1

)
ways to do that.

(Note: If Mn = k , then k has to have values n,n − i ...N.)
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Estimation based on sample maximum

All these combinations have the same probability, thus:

P (Mn = k) =

(
k − 1
n − 1

)
(

N
n

) = n
(k − 1)!(N − n)!

(k − n)!N!

And:

E (Mn) =
N∑

k=n

kP(Mn = k) = n
(N − n)!

N!

N∑
k=n

k !

(k − n)!

Exercise

Verify that:
N∑

k=n

k !

(k − n)!
=

N + 1)!

(n + 1)(N − n)!
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Estimation based on sample maximum

Thus:
E (Mn) = n

N + 1
n + 1

This directly implies that

T2 =
n + 1

n
Mn − 1

is an unbiased estimate of N

Exercise
Verify that E(T2) = N
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Which estimator should we use?

T1 and T2 are two unbiased estimators for the same parameter
N. The estimator T2 is called more efficient than T1 if

∀N Var(T1) > Var(T2)

It is a bit too long and technical to compute the variances of
the two estimators (the variables Xi are NOT independent). We
quote the results:

Var(T1) =
(N + 1)(N − n)

3n
Var(T2) =

(N + 1)(N − n)

(n + 2)n

Thus:
Var(T1)

Var(T2)
=

n + 2
3
≥ 1 ∀N, n
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The distributions of T1

Instead of demonstrating the formulas, we will make a small
Monte-Carlo to compute experimentally the distribution of the
two estimators.

Use this method of numerical calculation whenever a problem
gets intricate and you do not have a clear feeling of the result!
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The distributions of T1

In this run N = 1000, n = 10

400 600 800 1000 1200 1400 1600

50

100

150

200

Mean = 995.5 Variance = 32752.
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The distributions of T2

In this run N = 1000, n = 10

400 600 800 1000

200

400

600

800

Mean = 1006.3 Variance = 8342.
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There is a lower limit to an estimator Variance?

T2 should be used since its variance is smaller. Do we have a
lower bound on the estimator’s variance?

Yes! If you have a random sample from a continuous
distribution f (x |θ), θ being our parameter and T an unbiased
estimator of θ, then, under certain conditions, the variance of T
has to be larger than:

Var(T ) ≥ 1

nE
(
− ∂2

∂θ2 ln f (X |θ)
)

n is the sample size of the variable X .

Unbiased estimators that attain the minimum variance may
exist.
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Estimating the number of German tank

For the records, this table compares the estimated German
production rate with the real one. The statistical analysis was
rather accurate. Much less accurate the numbers provided by
the intelligence.

Date of estimate Statistical Intelligence German records
June 1940 169 1000 122
June 1941 244 1550 271
August 1942 327 1550 342

The true production rate became available after the German
surrender from the Speer Ministry.
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Exercise!

Exercise
We have a random sample X1,X2, · · ·Xn of iid variables
distributed exponentially:

f (x |λ) = λeλx

Verify that the following estimators:

T1 = X̄n =

∑
i Xi

n
T2 = nMn

where Mn is the maximum of the sample, are unbiased for the
parameter 1/λ. Which estimator would you use for estimating
1/λ?

102 Del Prete Cramer-Rao



Exercise!

Exercise
In the problem of determining the number of German tanks we
have found an unbiased estimator based on the maximum of
the sample.
Could we have used the minimum of the sample to construct
another estimator for N? Is it reasonable?
Work out the details.
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Exercise!

Exercise
Suppose that you have found two unbiased estimators for a
parameter θ. The two estimators U and V have the same
Variance. We cannot decide which of the two to use on the
ground of efficiency.

However we could do better and use a third estimator
W = (U + V )/2.
Verify that even W is unbiased and show that the variance of W
is smaller than that of U and V, even if the two estimators are
not independent.
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Estimation if Frequency theory
An example

The reaction: e+e− → µ+µ− has the cross section:

dσ
dΩ

=
α2

4 s
(1 + cos2 θ + αW cos θ)

We make n measurements of θ to estimate αw . Before you rush
to make a LS fit, lets think to different methods, may be easier.
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Example III

I Let us call x = cos(θ)

I transform the x-sect to a p.d.f. (must be normalized to one):

f (x ;α) =
3
8

(1 + αwx + x2) Assume x ∈ (−1,1) with full eff.

I Find the mean:

E(x) =

∫ +1

−1
xf (x)dx =

αw

4

I Hence a good estimator for αw is:

α̂w = 4x
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Example IV

This function of the data (statistics) is good to estimate αW
since:

I

E(α̂W ) = αw NO bias

I

Var(α̂w ) =
16Var(X )

n
Consistent

I p.d.f. of α̂W is asymptotically Normal (CLT).
I These are direct consequences of the very general

theorems of the Large Numbers and of the Central Limit.
I The method works even if the number of events is so low

that the Least Square cannot be used.

107 Del Prete Frequency analysis



Estimators in frequency theory

If your favorite method is still the Least Square, let us see how
you would have done. We have n = 1000 events classified in
20 bins.

-0.5 0 0.5 1

10

20

30

40

50 Let us call:
I ri the event number in each bin.
I xi the center of each bin
I wi the weight.

The method consists in minimizing:

X 2 =
∑

i

wi

(
ri − K

3
8

(1 + x2
i + αxi

)2

∂X 2

∂α
= 0 → α̂ =

∑
i wixi +

∑
i wix3

i −
8

3K
∑

i wi rixi∑
i wix2

i
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Comparison of the two estimators

-1.0 -0.5 0.0 0.5 1.0 X

20
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80

100

fHxÈΑL
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Estimators in frequency theory

The previous examples indicates the way to build an estimator:
I Find a convenient function a(x) (in previous example

a(x) = x)
I From the Law of Large Number we know that:

a =

∑
i a(xi)

n
→ E(a) = h(θ)

I Assume that the inverse exists:

θ = h−1 (E(a))
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Estimators in frequency theory

An estimator for θ is

θ̂ = h−1(a)

This function is, by construction:
I E(θ̂) = θ (Asymptotically)
I Var(θ̂) ∝ 1

n (Consistent)
I Asymptotically Normal.
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Max-L in short

In the example discussed above, assume you have only 10
detected events, too few for LS method. We build the Likelihood
(independent events):
The Max-L method (Fisher): among all possible values of aW
one should choose the one which maximizes the joint
probability of the observations.

L =
∏

i

f (xi ,aW )→ LogL =
∑

i

Log f (xi ,aW )

L is NOT a probability: Xi → xi not RV but data. L is a function
of aW .
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Max-L analysis of e+e− → µ+µ−experiment

Ten events for f ∝ 1 + aW x + x2 L =
∏

f (xi)

Θ
��

� 0.75185

CI0.68 » -0.246609 ® 1.52922

0.5 1.0 1.5
Θ

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

Log L - Log Lmax

If the pdf would be N, the line at Log L = Log Lmax − 0.5
would cut a 0.683 CI for aW (why?). In this case this is true only
approximately. (later on exact CI.)
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Comments on the inference in Frequency statistics

I These frequency methods are good in average.
I They all produce an estimator (a function of the data)

whose value is an estimation of the parameter. Properties
are: unbiasedness (asymptotically), consistency,
asymptotic Normality.
(Sufficient and efficient estimators, if exist, are also found.)

I The inference is performed only through the data, not on
the parameter directly.

I No prior information on the parameter is needed. In fact we
do not know how to use any previous information.
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Comparison of Bayes and Frequency:
Inference on a Parameter

Bayes and frequency methods produce similar results; let us
analyze a very simple experiment:
A box contains NR and NW red and white balls...

Given Frequency Bayes
NR ≥ 0
NW ≥ 0

P(R) = NR
NW +NR

unknown
P(R) = 1

2
Insufficient reason

1 Ball R P(R) > 0 P(R) = 0.66
2 Balls R+W P(R) = 0.5 P(R) = 0.5

100 Balls, 40 R P(R) = 0.4± 0.05 P(R) = 0.402

We have assumed a flat prior for Bayes and used the mean
value of the probability to quote the inference.

P(R) =
NR + 1
Ntot + 2
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The Hypothesis test

After the inference on the parameter (“the fit” to determine αW )
we still miss two important steps:

I test of the hypothesis to “validate” the model: how well the
data and the theory agree;

I determine the precision of the estimate. In the case of
large statistics the CLT makes it easy: the distribution of
estimators is Normal; The standard deviation define
intervals with well defined probability content
(±1σ → 0.683 probability content).
In the case of low statistics experiments we will have to
compute intervals of expected probability content with
more refined techniques (Confidence Intervals)
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Outline

Part 4

The methods of hypothesis test

I Two schemes: Significance test and Decision test.
I Significance test or Goodness of fit (Fisher).
I Decision test (Neyman and Pearson).
I Example (and Exercises!)
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Hypothesis test (introduction)

One of the first step in the analysis of an experiment is to ask
ourselves if the measurements are in agreement with the model
that has motivated our work.

The methods of inference used to support or reject claims
based on sample data are known as tests of hypothesis.

We will consider only those hypothesis that are able to make pre-
dictions on the way a random variable is distributed (statistical
hypothesis).

The theories exposed here are bases on the frequency statistics
and due largely to R.A. Fisher and J. Neyman.
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Hypothesis test (general)

A test of hypothesis starts with the definition of the null
hypothesis H0, the model that will be subject to experimental
test. It must be a statistical hypothesis since it is used to make
statistical predictions.

The null hypothesis is assumed true and used to compute the
distribution of the random variable on which we base the test.

Hence we can only disprove H0. The hypothesis test methods
work always against H0.

(Even if the probability of the measurement, under H0, is
large,we cannot logically conclude that we have proved that H0
is true.)
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Hypothesis test (general) I

If the outcome of the measurement has a probability, under H0,
too small then

I we have encountered a rare event;
I the model is wrong.

At this point two main schools exist:
I Significance test
I Decision making test

We will start discussing the first, more used by scientists
working on the field and then the more mathematically
structured Acceptance test.

120 Del Prete Hypothesis test (general)



Significance test

The Significance test

The first to use this test was K. Pearson. Fisher was the most
remarkable founder of this way of testing.

121 Del Prete Significance test



Significance test: The lady and the tea I

A lady declares that, by testing a cup of tea made with milk she
can discriminate whether the milk or the tea was first added to
the cup.(This example is due to R.A.Fisher)
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Significance test: The lady and the tea II

We will prepare four cups of tea prepared in one way and four
in the other way and present them to the lady in random order.
The lady is asked to divide the eight cups in two sets of four,
accordingly with the way they are prepared.

The first step is to define the null hypothesis (Ho): the lady has
no skill in choosing the correct preparation.

With this hypothesis we can make the analysis of the results of
the experiment.

There are 70 ways of choosing 4 objects out of 8: N =

(
8
4

)
.

If the lady had no skill in choosing the correct preparation, the
preparations would be indistinguishable to her and she would
be correct (correctly assign all eight cups) once in seventy.
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Significance test: The lady and the tea II

This means that if the experiment would be repeated very many
times in uniform conditions, she would be correct with a
frequency of 1/70; or the probability to be correct would be
1/70.

In the experiment the lady could be right with all the four cups,
an event rather rare if the null hypothesis would be true. We say
that the result is significant. This means that we have
encountered a rare event, if H0 is true; or the claim of the lady
has some foundation...
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Significance test: The lady and the tea I

In case the lady would have been correct three times and one
wrong, what would be our conclusion?

We compute the possible number of times this event occurs in
this way: the 3 correct cups are drawn from the four available,

and the number of ways this occurs is
(

4
3

)
= 4, while the

wrong cup is drawn also from four and the number of ways is(
4
1

)
= 4. Thus the total number of ways is 16.

Similarly in the other cases.
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Significance test: The lady and the tea I

If the lady would have had 3 successes and one failure we
could not claim a statistical significant result. In fact the
frequency in chance would be 16 in 70 (or 22%) for the
obtained result.

Moreover in computing its significance we must take into
account not only its frequency, but also the frequency of any
better (against H0) result.
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Significance test: The lady and the tea

The reason for considering the cases better than the one
observed is clear with this example

Suppose that the case 3 correct 1 wrong would have one
chance in 70 and the case 4 correct and none wrong would
have a 16 chances in 70 and assume also that the lady would
have guessed correctly only three cups.

The rare case 3 correct and 1 wrong cannot not be judged
significant even if its probability is low.

In repeated experiments the event 4 correct and none wrong
would have occurred more frequently by mere chance. Hence
the chance of having obtained the 3 correct 1 wrong cannot be
judged significant without considering also the more extreme
event 4 correct none wrong.
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The P-value

The probability of the data, under the hypothesis H0 are thus
defined as the probability of what has been observed and all
possible more extreme outcomes, computed assuming H0 is
true:

P − value = P (N ≥ n |H0 )

This quantity was introduced first by K. Pearson (1900) and it
was then elaborated by R.A.Fisher (1922).
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The P-value

The P − value is a random variable.

If H0 is true, then it is easy to prove that P − value is distributed
uniformly:

P − value ∼ U(0,1)

The concept of P-value is clearly very frequentistic, since it
makes use of hypothetical, not observed results.

In Bayes statistics nothing similar exists: you cannot make
significance test.

The utility of these methods should not hide its philosophical
implications: we are making use of unmeasured quantities.
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Significance test: The lady and the tea III

To avoid the noise produced by chance, it is convenient to
disregard all experiments that have a large probability, for they
do not reject the claim of the lady (H0).

Fisher suggests, as a practical rule, that we should ignore results
with a probability greater than five per cent (one in twenty). These
results can be produced by chance effects and are irrelevant to
assess H0

By convention we agree that effects which can occur by chance
once in seventy trials are significant . The value of 5% is
convenient, but there nothing sacred in it.
It is open to the experimenter to be more or less exacting in
respect of the smallness of the probability he would require
before he would be willing to admit that his observations have
demonstrated a positive result. (Fisher)
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Example

If, in the example of e+e− → µ+µ−, we would have tested a
theory without the parity violating term versus the data we
would have obtained:

X 2
m = 81 Dof = 49 hence P-value = 3.4 · 10−3

The result is “very significant”. Only 3 in a thousand
experiments (performed in uniform conditions) would have
performed worse. What should we do?
We have to go back to the experiment, check the apparatus,
etc. Eventually we would be obliged to admit that the theory
cannot account our results.
If these results would be obtained before the P-violation
discovery (1954) we hardly could announce, with this
significance only, a P-violation discovery.
The relevant significance level of the test depends on the issue:
the announce of an important discovery needs an
overwhelming evidence... and often is not enough!
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Significance test

R.A. Fisher on the significance test:
I The significance of a result is used in day-to-day work in

experimental research, in natural sciences. It is a tool used
to distinguish real important effects from those produced
by the chance.

I The significance test is a way to gain knowledge. Fisher:
inductive inference, : from the empirical evidence to the
general laws. The P-value assumes an epistemic value in
Fisher’s statistics.

I Significance test is applicable to single experiment.
I The P − value is just the beginning to judge the

hypothesis. No automatic rejection must be based on the
P − value only. The researcher must exercise his judgment
and make decision on the specific issue.
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Examples of Significance tests

The method should be already clear:
I a null hypothesis H0 is identified. This must be capable of

making quantitative predictions.
I a statistics t (a function of the observations only) is built;

this is a Random Variable.
I the density of t is computed, g(t | H0).
I we compute the value of t from the observation: t0
I the probability that t is even more extreme than what

observed (the P-value) is, α =
∫∞

t0
g(t)dt

If α is larger than a a threshold (5% is the value suggested by
Fisher) H0 is accepted, without further analysis. If it is smaller,
then H0 is questioned and further analysis is needed
(significant result)
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The z-test

Example

An electric line should draw a current i0= 5 A (H0)
Measurements are done with an instrument having a Normal
noise noise ∼ N(0, (0.1 A)2).

IM

gHIL=NH5,0.12�nL

4.8 5.0 5.2 5.4
I

1

2

3

4

PHIL

If (H0) is true: I ∼ N
(
5,0.12)

ii = 4.58,4.91,4.93,4.95 A
The statistics is Ī ∼ N(5,0.12/2)
in our case ī = 4.84
The P-Value is the shadowed area.

Better: construct the variable:

Z =
Ī − µ0

σĪ
∼ N(0,1)→ P−value = 2

∫ ∞
|−3.16|

N(0,1)dx = 0.16%

The result is significant , H0 is questioned. The experimenter
has now the initiative.
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Significance test: the Pearson test

This method is due to K. Pearson.
Let us consider a random variable X , measured in n
independent experiments yielding: x1, x2 · · · xn. The histogram
of the xi is shown in:

4 6 8 10 12 14

5

10

15

20


ri events in bin i

mi = pin expectation H0
n total events
k number of bins

(The bis size can also be different bin to bin, it works also for
two and higher dimension histograms)
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The Pearson test

H0 specifies the distribution of the X :

X ∼ f (x | θ0) → pi =

∫
X∈bin i

f (X |θ0)dx

The statistics is:

u =
k∑

i=1

(ri − n · pi)
2

n · pi

To compute the distribution of u we have to know the
distribution of ri .

ri ∼ B(pi ; n) −−−→
n→∞

N (pin,pi(1− pi)n) ≈ N(pin,pin)
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The Pearson test

Assume that this approximation holds (n large), then the
variable:

zi =
ri − n · pi√

n · pi
∼ N(0,1)

Hence

u =
∑

i=1,k

(ri −mi)
2

mi
=
∑

i=1,k

z2
i ∼ χ2

k−1 (1)

The distribution is independent of H0
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The Pearson test

The reduction of the number of degrees of freedom by one
follows from the constraint

∑
ri = n; only k − 1 variables are

independent. For instance we could compute rk as

rk = n −
k−1∑
i=1

ri .

This result is independent of the p.d.f. f (x) of the random
variable X . The only important condition is the normality in
each class, i.e. enough events in each class.

The tests that need no specifications of the parent distribution
are called distribution free or non-parametric

These formulas are correct but the argument that we have
followed is not mathematically sound.
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When Pearson is not so simple...

Simple hypothesis and occurs seldom in practice. In most of the
cases some parameters have to be estimated from the sample.
If the value of the parameter is determined by the ensemble
{ri} then is possible to prove (Fisher-Cramer) that the effective
number of DoF is decreased by the number of parameters
determined from the data.

It often happens that the number of events in each bin (or
class) is very small and the Normal approximation of the
Poisson distribution is not valid. In these cases the variable u is
not distributed as a χ2

k−1. u density has to be computed
numerically often with Monte Carlo methods. The distribution
depends not only on the number of classes but also on the
model; the test is not any longer distribution free.
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Pearson test example: Mendel peas

Modern genetics begins with the work of Gregor Mendel, an
Austrian monk whose breeding experiments with garden peas
led him to formulate the basic laws of heredity.

Mendel published his findings in 1866, but his discoveries were
ignored till 1900 when a number of researchers independently
rediscovered Mendel’s work and grasped its significance.

In a famous experiment, Mendel cross-pollinated smooth yellow
pea plants with wrinkly green peas. Mendel then counted the
number of times he got green and yellow peas. He expected
p = 0.75.

So H0 : p = 0.75 and we will try to disprove it.
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Pearson test example: Mendel peas

The data are summarized in the following table. For each
experiment we report: the number of observations, the number
of yellow peas (successes), u (assuming H0) and the
P − values.

Experiment N.O tests yellow u P − value

1 36 25 .593 .44
2 39 32 1.034 .31
3 19 14 0.018 .89
4 97 70 .416 .52
5 37 24 2.027 .15
6 26 20 0.051 .82
7 45 32 0.363 .55
8 53 44 1.818 .18
9 64 50 0.333 .56

10 62 44 0.538 .46

Total 478 355 0.137 .71

Prediction

0 2 4 6 8 10 12
Experiment0.5

0.6

0.7

0.8

0.9

1.0
fraction of successes

No result is significant, thus no reason to reject H0.

141 Del Prete Mendel’s Peas



Rutherford’s α

In 1912 Lord Rutherford (Phil. Mag. 1912) was investigating
whether the decay process of a radioactive atom is
independent from the status of all the other atoms.

If such is the case, the number of events in a fixed time interval
follows the Poisson statistics. However the mean is not known
and has to be determined from the data. The hypothesis is not
simple.

The experiment consisted in measuring the number of alpha
particles emitted from a radioactive source in time intervals
7.5 sec long. The number of measured intervals was n = 2608
(see the next Table).

The hypothesis to test is (H0): the population is Poisson
distributed with (unknown) average µ.
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Rutherford’s α, results

N Ni n · pi u
0 57 54.399 0.124
1 203 210.523 0.2688
2 383 407.371 1.4568
3 525 525.496 0.0005
4 532 508.418 1.0938
5 408 393.515 0.5332
6 273 253 1.44
7 139 140.325 0.0125
8 45 67.882 7.7132
9 27 29.189 0.1642
10 10
11 4 17.075 0.0677
12 2

Total 2608 2608 12.8849

Data

Prediction

0 2 4 6 8 10 12
Decays0

100

200

300

400

500

600

700
Counts

From columns 1 and 2: x =

∑
i i · Ni

n
= 3.870 The P-value is:

P(u = 12.885) =

∫ ∞
12.885

χ2
9(u) du = 0.17 not significant: no

reason to discard the Poisson distribution.
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More on the P-value

There are common misunderstandings in the interpretation of
the P − value.

I It is not correct that large values of P − value is evidence
for H0. It is true that large values of P − value means little
or no evidence against H0.

I It is not correct that small values of P − value is evidence
of important effects. It is true that small values of the
P − value is evidence against H0.

I P − value is not the probability that H0 is true. In frequency
statistics there is no such a thing as the probability of an
hypothesis.

I P − value is not the probability of the alternative hypothesis
is true. In significance test there is NO alternative
hypothesis.
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Significance tests

The significance test tool box is rich!:
Z-test
T-test
χ2 (Pearson)
Kolmogorov-Smirnov
Cramer-Smirnov-von Mieses
Run test
Sign test
Wilcoxon rank test
....
Some are specific test some are of much wider applicability.
Most are parametric. You do not need to invent your own test,
just take off shelf the most appropriate. None is always superior
to the others. If two tests are independent they can be
combined (Pearson-Run).
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The Acceptance test, Discussion

Unfortunately physicists mainly have created a “mixed” method
where the frame of Neyman-Pearson (see next) is
implemented: H0, HA and size are defined and the statistics
computed with its P − values, which is then interpreted both as
type I error rate and as evidence against H0. A sharp decision
is then made based on the P − value: if the P − value is below
an assigned threshold (a sort of size of the test) H0 is rejected.
Very often the tests follow formally the acceptance-rejection
rules but then the P − value is computed. In terms of
accept-reject hypothesis tests, the P − value has no relevance
and should not be quoted.
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The Decision making test

The Decision making test

This test of hypothesis was elaborated by Neyman and
Pearson, originally as an attempt to improve on the Significance
test. Fisher strongly disagree with the principles governing the
test claiming that those methods were unsuited to scientific
research.
The decision test is what is now called “hypothesis test” in
statistical mathematics and has totally replaced the
Significance test.
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The Decision making test, Introduction

In addition to the null hypothesis (H0) we have an alternate
hypothesis (HA) (”the rational human mind did not discard a
hypothesis unless it could conceive at least a plausible alternative
hypothesis” (Pearson). (Often we have only one model to test...)

A statistics t(X ) is defined and its distribution g(t | H0) is
computed under the assumption that H0 is true. A Critical
region wα, (α test’s size) is defined with the property

P(t ∈ wα | H0) = α

If t ∈ wα we accept HA else we accept H0.
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Brief considerations on the two approaches

Fisher’s view of inductive inference based on significance test
and focused on the rejection of the null hypothesis as a way of
gaining knowledge, is completely dismissed by Neyman and
Pearson.

They introduce instead the concept of rules for making decision
between two hypothesis: the inductive behavior: ”The term
inductive behavior means simply the habit of humans and other
animals (Pavlov’s dogs etc) to adjust their behavior to noticed
frequencies of events, so to avoid undesirable consequences.”
(Neyman)

Neyman-Pearson theory is non evidential but behavioral, as
discussed by Fisher: “No particular thought is given
to each case as it arises, no tester’s capacity for learning
exercised” (Fisher).
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How the decision making test is formulated

The test may fail in assessing H0 or HA. By construction there
is a probability α of wrongly rejecting H0. We distinguish two
type of errors:

I Type 1 error when H0 is told false while it is true
(probability α).

I Type 2 error when H0 is told true while HA is true
(probability β).

Test are prepared by fixing α (the losses) and searching a test
which minimizes β.

H0 is true HA is true
H0 is accepted correct Type II error (β)
HA is accepted Type I error (α) correct

It is clear that we would like a test which could allow both α and
β equal to zero or as small as possible.
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Errors I,II in Physics

Example

In a beam of e, π we have a detector to tag electrons. The
beam contains also pions.

π , e

hit

DETECTOR

Electrons

Pions

Threshold

5 10 15 20
T

0.2

0.4

0.6

0.8

1.0

PHTL

H0: the hit is an electron,
HA: the hit is a pion
Type I Error: P(T ∈ wα | H0) = α is the loss of electrons,
Type II error: P(T ∈ w̄α | HA) = β is the contamination of pions
in the electron sample.
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How the acceptance-rejection test is formulated

The quantity:
P(X ∈ w | H1) = 1− β (2)

is called the power of the test and represents the probability of
correctly classify H1.
The power of the test depends in general on H1. As an example
consider the test on the value of a parameter θ: H0: θ = θ0 and
H1: θ = θ1. figure)

-2 -1.5 -1 -0.5
Μ-Μ0

0.2

0.4

0.6

0.8

1

Power

If θ1 = θ0 , the limit where
H0 = H1 we have: 1− β = α.
The power will usually
increase with the distance
between θ1 and θ0.

The LR test for simple hypothesis is UMP: the most powerful on
all the parameter space.
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The acceptance test in the case of simple hypothesis

The method is the following:
Decide the size of the test α. This will set the critical region wα.∫

wα

f0(x) dx = α

1−β = power =

∫
wα

f1(x) dx =

∫
wα

f1
f0

f0 dx = Ewα(
f1
f0
| H0)

The power is maximized if in all wα we maximize f1
f0

. Therefore
we have to choose wα such that:

t =
f1
f0
≥ tα in all wα Hence H0 is rejected if t ≥ tα

tα defines wα and must fulfill: P(t ∈ wα | H0) = α
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The Decision test: Simple hypothesis I

The ∆S = 1/2 predicts that Ξ0 proper lifetime is twice the
known Ξ− lifetime. We have made measurements and we want
to check the theoretical predictions.
Measured: ~t = {t1, t2 · · · tn}. Let us call τ0 and τ1 the predicted
lifetimes. The hypothesis are simple, the two lifetimes are
known.

H0 : τ = τ0 HA : τ = τ1
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The Decision test: Simple hypothesis I

The likelihood ratio is:

L =
L(~t | H1)

L(~t | H0)
=

∏
i

1
τ1

e−ti/τ1∏
i

1
τ0

e−ti/τ0
=

(
τ0

τ1

)n

exp
(
−nt(1/τ1 − 1/τ0)

)
L > cα is the condition to reject H0 in favor of H1

(cα depends on the size of the test.) Instead of solving directly
we take the logarithm:

n(log(τ0)− log(τ1))− nt(1/τ1 − 1/τ0) > log(cα)
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The acceptance test: example I

This can be rewritten as:

t > Tα
n if τ1 > τ0

t < Tα
n if τ1 < τ0

There is no need to solve for Tα
n . Tα

n is found by solving:

P(t > Tα
n | H0) = α

If τ1 > τ0, else the inequality must be reversed.
To solve the previous equation we have to know the density of t .
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The acceptance test: example

We will consider only the simple case of n = 1; in this case
t = t and the density is the original exponential density. Let us
consider only the case τ1 > τ0, the other case is analogous.
Tα

1 is computed by solving:

α =

∫ ∞
T α

1

f (t | H0)dt = e−T α
1 /τ0 hence Tα

1 = −τ0 logα

If t > −τ0 logα we reject H0

The Power of the test is:

1− β =

∫ ∞
T α

1

f (t | H1)dt = e−T α
1 /τ1 = e−τ0 logα/τ1 = (α)τ0/τ1
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The acceptance test: example I

Exercise
Perform the test in the limit n very large, using the CLT.

Exercise
Compute the density of t (use MGF). Then make the exact test.

The exponential density that we have discussed in the previous
examples has sufficient estimators. The likelihood function is
function of any sufficient estimator. This is why we could greatly
simplify the calculation of the critical region.
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Symmetry of the two hypotheses

There is an asymmetry between H0 and H1. We can
understand it from the Mendel example. Mendel had two
hypothesis to test (in the decision framework):

I HA: p = 0.75 This is what Mendel wanted to prove.
I H0: p = 0.5. This is the alternative hypothesis, no

preference in the offsprings of peas.

H0 is standard science. HA is what the scientist believes. Type I
and II error probability mean:

I α wrongly accept HA. We must be critical in accepting new
theories. α is small (usually ≤ 0.05) since a false theory
should not be supported, funded etc.

I β wrongly reject HA (the discovery). Of course the
researcher wants β to be as small as possible.
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Symmetry of the two hypotheses

The damage of an error of type I could be large to the
community: a wrong theory/model becomes part of the body of
science.

On the contrary, if an error of type II occurs, a good theory has
been rejected with frustration of the experimenter; but also a
good theory would be rediscovered later with little or no impact
on the community.

Even worse are the consequences if the test did not regard
pure science but aimed to asses the effects of a new drug or a
new fertilizer proposed by a chemical industry as can be easily
guessed.

The work of Mendel is an example of how a scientist must
work; on the contrary the symmetric Lysenko shameful story
should teach us how bad can be to behave differently.
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The Decision test, NON simple hypothesis I

The case where H0 or H1 or both are composite is more
frequent. Typically this happens when testing a theory or model
with free parameters that have to be determined from the data.

We will consider only tests on parameters that specify a
distribution function.

In general no UMP test exists.
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The acceptance test: example I

Assume that the distribution has the form f (X ; ~θ). The likelihood
function, for independent measurements is:

L =
∏

i

f (Xi ; ~θ)

Let Ω be the space of the parameters. The hypothesis H0 put
restrictions on some of the ~θ for instance:{

H0 = ~θ ∈ ω ⊂ Ω

HA = ~θ ∈ Ω
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The acceptance test: example I

This means that H0 fixes the value of a part of the parameters
while H1 does not put restriction on the parameters.

1 2 3 4 5 6 7
Θ

0.05

0.1

0.15

0.2

0.25

LHX
®

L

Ω W

sup
ΘÎΩ

LHXL

sup
ΘÎW

LHXL

Our statistics id the likelihood ratio:

λ =
supθ∈ω L(~X | θ)

supθ∈Ω L(~X | θ)

0 ≤ λ ≤ 1

The test statistics that we will use consists in finding the
maximum of the likelihood function in the parameter space
allowed by the two hypothesis and then making the ratio.
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The acceptance test: example I

The difficult part of the problem is the calculation of the critical
region. For this we have to compute the density of λ(H0).

The usual procedure is to consider the asymptotic distribution.
Wilks proved that, for n→∞ the limiting distribution of −2 ln(t)
is, under H0,:

−2 ln(λ) ∼ χ2
r

where r is the number of parameters fixed by H0.
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The acceptance test: example

An instrument was sent to the firm for upgrade. Assume the
readings are N(µ, σ2) and σ is our measure for the instrument
precision.
Before the improvement σ = σ0, after σ = σ1. We want to test if
the (costly) operation improved the instrument. H0 : σ1 = σ0
H1 : σ1 < σ0
we perform the LR test. H1 is composite.

LR = λ =
L1(~X )

L0(~X )
=

(
σ0

σ1

)n exp(−
∑

(xi − µ)2/(2σ2
1))

exp(−
∑

(xi − µ)2/(2σ2
0))

The condition to reject H0 is (s2 =
∑

(xi − µ)2):

logλ = n log(
σ0

σ1
) + ns2

(
1
σ0
− 1
σ1

)
≥ log cα
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The acceptance test: example

The complicate expression is re-written as:

s2 ≤ Kα The inequality sign is reverse since σ1 ≤ σ0

Since
s2

σ2
0
∼ χ2

n, H0 is rejected if
s2

σ2
0
≤ X n

α , where X n
α is the

α-quantile of the χ2
n distribution.

The power of the test is:

Power = P(s2/σ2
0 ≤ Kα | H1) = P(s2/σ2

1︸ ︷︷ ︸
∼χ2

n

≤ (σ2
0/σ

2
1)Kα | H1)
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Why Bayesian cannot do Goodness of Fit test

Bayes formula:

P(H0 | Data) =
P(Data | H0) · P(H0)

P(Data)

If H0 is a parameter the method works. In fact we can write:
P(Data) =

∑
i P(Data | Hi)P(Hi). Hi is just a possible value of

the parameter.
If H0 is an hypothesis we cannot normalize to anything
meaningful, we cannot list ALL possible alternatives.
Bayesian can only compare two hypothesis, by comparing the
relative probabilities:

P(H0 | Data)

P(H1 | Data)
=

P(Data | H0)P(H0)

P(Data | H1)P(H1)︸ ︷︷ ︸
Bayesfactor

167 Del Prete Bayes Hypothesis test



Why Bayesian cannot do Goodness of Fit test

When comparing Data to an hypothesis, both Freqentistic and
Bayesian would like to compute

P(Data | H0)

This is always zero, since it is a density!
Frequentistic solve the problem by identifying a critical volume
wc of the sample space where to integrate the density.
In the case of X 2 (Pearson) test:

wc = X 2 > X 2
obs.

This volume is on non observed data.
Bayesian cannot do it, since all inference must be done on
observed data.
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Is all what we need to make a decision?

We have discussed how to perform an hypothesis test and
chose H0 or H1 according to the value of a statistics.

H0 is true H1 is true
Chose H0 OK α

Chose H1 β OK

α and β are the probabilities to make the wrong choice. We
have elaborated the procedures to optimize the correct choice,
but we do not have specified the costs of a wrong choice.
This aspect may be a relevant, in practical issues.
Including the gain/loss concept into the problem will shift our
methods from the usual information theoretical approach to the
decision theory approach.
Let us see how it started and how it works in a simple example.
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Pascal Wager (le pari de Pascal)

Pascal introduces in the great debate whether God exists or
not, a new concept: the gain and loss. In his Pensees Pascal
dismantles the notion that we can thrust reason in matters of
religion. Since we are not sure if God exists, then we have to
rely on probability, as in a game of chances, to compute pros
and cons.

God Exists God does not exists
Pious life +∞ -N
Libertine life −∞ +N

In this simple version (see the Pensees, note 233, “Infinie- rien”
to understand the full argument), the decision is living as if God
exists is obvious, since you have nothing to lose and everything
to gain.
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Decision theory, by a simple example I

A detector runs with a maximum daily rate ΘM but may drift
from its optimal setting. Each morning we have to decide if we
reset the apparatus or not. The decision is made from the
previous day number of events t . The adjustment (d2) takes a
fraction p of the day. If we do not adjust (d1) the efficiency is
lower and we lose ΘM − θ.
We want to make that decision which minimizes the losses.

Decision Loss function
d1 ΘM − θ
d2 p Θm

We reset the system if:

L(d2) ≤ L(d1)→ θ ≤ Θm(1− p)

.... but θ is unknown...
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Decision theory, by example II

We need to know θ. The only way is to use Bayes approach:
In Bayes school θ is a “random variable” with π(θ) its prior. from
the observations we compute the posterior for θ and we
average over θ

posterior loss is: Eθ [L(θ,di)]

The Bayes rule is the one giving the smallest posterior loss.
Assume that the distribution of t is a Poisson:

P(t |θ) =
θt

t!
e−θ

and also assume that the prior for θ is uniform up to the
maximum production rate ΘM :

π(θ) =
1

ΘM
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Decision theory, by examples III

The posterior distribution is:

P(θ|t)dθ ∝ 1
ΘM

θt

t!
e−θdθ

With the change of variables u = 2θ (0 ≤ u ≤ 2ΘM ) we obtain:

P(u|t)dt ∝
(u

2

)t
e−u/2du = χ2

2(1+t)

The posterior losses in case of d1 are:

Eθ(L(d1|t) =

∫ ΘM

0
(ΘM − θ)P(θ|t) dθ

= ΘM

∫ 2ΘM

0
P(u|t)du − 1

2

∫ 2ΘM

0
uP(u|t)du
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Decision theory, by examples IV

Eθ(L(d1|t) = ΘMP(χ2
2t+2 < 2Θm)− (1 + t)P(χ2

2t+2 < 2Θm)

This simplify if ΘM � 2(1 + t):

Eθ(L(d1|t) = ΘM − (1 + t)

In case of d2 calculation are simple since the loss does not
depend of θ :

Eθ(L(d2|t) = p ΘM

Thus the Bayesian rule is: chose d1 if Eθ(L(d1|t) ≤ Eθ(L(d2|t) ,

If ΘM is large (� t + 1) the rule simplify:

Reset the system if t ≤ (1− p)ΘM − 1 else continue.
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Outline

Part 5
I Confidence Intervals.
I Example (and Exercises!)
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Definition of Confidence Interval

The problem of estimating a parameter by intervals was faced
and solved in a general way by Neyman in 1935 and 1937 with
two classical papers.

It is a very frequentistic concept: the interval estimation.
Estimate the parameter by an interval which indicates the
precision of the measurement.
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Definition of Confidence Interval

A CI is built with a sequence of hypothesis test: A measurement
XM is tested against H0 : µ = µ0, for all conceivable µ

w���
Α

XM

fHXÈΜL � ���������������������������
ã- ���

1

2
Hx-ΜL2

�!!!!!!!!
2 Π

Α = 0.9

-2 2 4 6 8 10
x

0.1

0.2

0.3

0.4

PHx È ΘL
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Definition of Confidence Interval

A CI is built with a sequence of hypothesis test: A measurement
XM is tested against H0 : µ = µ0, for all conceivable µ

w���
Α

XM

fHXÈΜL � ���������������������������
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Definition of Confidence Interval

A CI is built with a sequence of hypothesis test: A measurement
XM is tested against H0 : µ = µ0, for all conceivable µ

w���
Α

XM

fHXÈΜL � ���������������������������
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Definition of Confidence Interval

A CI is built with a sequence of hypothesis test: A measurement
XM is tested against H0 : µ = µ0, for all conceivable µ

w���
Α

XM
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Definition of Confidence Interval

A CI is built with a sequence of hypothesis test: A measurement
XM is tested against H0 : µ = µ0, for all conceivable µ
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Definition of Confidence Interval

The CI is the ensemble of the value of the parameter θ for
which H0 is true; i.e. such that X ∈ w̄θ:

Iθ(X ) : {θ : X ∈ w̄θ}

By construction, X ∈ w̄θ implies that θ ∈ I(X ) and vice-versa.

X ∈ w̄θ ←→ θ ∈ I(X )

From this follows that:

α = P(X ∈ w̄θ | θ) = P(X : θ ∈ Iθ(X ))

The left side is equal to α by construction, hence the interval
I(X ) is a α-CI.
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General method of construction a CI

Perform a hypothesis test on the simple hypothesis: H0 : θ = a.
The solution of this problem consists in finding a critical region
wa of size α, that is : P(X ∈ wa | θ = a) = 1− α.)

wa

X

θ

a

X

w̄α is the acceptance region of size
α.

Iθ(X ) = {a : X ∈ w̄a}

If the sample point X falls in wa,
the hypothesis is rejected with a
significance α.
a is NOT in our α− CI.

X is a random variable, and Iθ(X ) is a random interval
The set of all possible acceptance region defines a region of
the X − θ plane called the acceptance belt or α− belt
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Meaning of a CI

Up to now the intervals I(X ) are random variables, function of
X . Now we make a measurement:

{X1,X2 · · ·Xn} −→ {x1, x2 · · · xn} and I(X )→ i(x)

i(x) is NOT a random variable, it is a segment of the real axis,
a CI, the one produced by the measurement. The property

α = P(X ∈ w̄a | θ = a) = P(X : a ∈ I(X ))

translates into: In a long run of experiments the intervals i(x)
cover the unknown parameter θ in a fraction α of cases.
We cannot say that our i(x) is the one which covers the
unknown parameter; it is produced so that in a long series of
experiments the fraction of CI covering the unknown θ is α.
We cannot speak of probability: P(θ ∈ i(x)) since there is NO
random variable in this proposition.
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General method of construction a CI

There are several ways to construct the acceptance region and
conversely several definition of Confidence Intervals

Very used are the central acceptance region. This means:

P(T ≤ wL | θ) = P(T ≥ wH | θ) =
1− α

2
w̄α : {wL ≤ T ≤ wH}

Left and right tails have the same probability.
The upper and lower acceptance regions consider only one
side of the distributions:

P(T ≤ wL | θ) =
1− α

2
w̄α : {T : wL ≤ T}

P(T ≥ wH | θ) =
1− α

2
w̄α : {T : wH ≥ T}

In all cases, the length of a CI decreases as n increases.
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Example lower limit, for N(µ, σ2), σ known

we have to setup a one-sided test:

w���
Α

XM

H0: how small Θ

CIΑ = @ΘL,¥D

-2 2 4 6 8 10 12
x

0.1

0.2

0.3

0.4

PHx È ΘL

z =
X̄ − µ
σ/
√

n
∼ N(0,1)

wα =

{
X̄ :

√
n(X̄ − a)

σ
≤ kα

}
the corresponding α-CI for µ is:

I(X ) = {a : X ∈ w̄a} =

{
a :

√
n(X̄ − a)

σ
≤ kα

}
=

{
a : a ≥ X̄ − σkα√

n

}

θL = X̄ − σkα√
n

is the lower limit

We have answered the question: How small can be the
parameter?

186 Del Prete Definition of a α-CI



Example lower limit, for N(µ, σ2), σ known

we have to setup a one-sided test:

w���
Α

XM

H0: how large Θ

CIΑ = @-¥,ΘUD

-2 2 4 6 8 10 12
x

0.1

0.2

0.3

0.4

PHx È ΘL

z =
X̄ − µ
σ/
√

n
∼ N(0,1)

wα =

{
Z :

√
n(X̄ − a)

σ
≥ kα

}
the corresponding α-CI for µ is:

I(X ) = {a : X ∈ w̄a} =

{
a :

√
n(X̄ − a)

σ
≥ kα

}
=

{
a : a ≤ X̄ − σkα√

n

}

θU = X̄ − σkα√
n

is the upper limit

We have answered the question: How large can be the
parameter?
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Upper Limit, an example

With the aim of measuring the lifetime of the proton an
experiment is performed at an underground laboratory. In a
large mass of water, the process: p → π0 + e+ is searched.

In one year NO event is
observed. The statistics is
Poisson:

P(n | µ) =
µne−µ

n!

Assume NO background,
the rate µ is the rate of the
signal.
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Upper Limit, an example

The upper limit of the rate of decay (.90CL) is given by:

1− α = 0.1 = P(N ≤ 0 | νU) = e−ν
u → νu = 2.3 evt/y

(or ν ≤ 2.3). A larger rate would make the probability of our
event too small (too many events predicted). On the contrary a
smaller rate will give a large probability to the event:
P(n = 0 | µ = 0) = 1.

The rest is “kinematics”: the “flux” (number of protons
participating) is

Np = V (cm3)ρ(g/cm3)(Z/A)NA ≈ 3 1034 for V = 104 m3

hence
pu

decay =
νu

Np
τL = 1/pu

decay ≈ 1034 y
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Exercises!

Exercise
The random variable X ∼ N(0, σ2) is sampled n times. Find
95% CI for σ2

Exercise
The random variable T ∼ e−T/τ/τ is sampled n times. Find
95% CI for τ in the following cases:

I n=1
I n→∞
I n finite.
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Bayes Confidence Intervals

The precise meaning of CI is different in Bayes and Frequency
statistics, but for both the issue is the precision of the inference.
When we say that the CI at 95% for µ is (1,5):

I In the Bayes statistics we mean: P (µ ∈ (1,5)) = 95%
(computed on the posterior probability)

I In the Frequency school neither µ or (1,5) are random
variables and NO probability statement is possible. But it
exists a algorithms (pivotal variable, Neyman construction)
which produce intervals which include the true, unknown,
parameter in a fraction α of experiments performed in
uniform conditions. The interval (a,b) is one of those.
Hence no Probability but Confidence.
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Bayes Upper Limit

Bayes Statistics: The problem is only mathematical: we start
from the Posterior probability:

The upper limit θU (at a CL α) is
that value of θ for which:

P(θ ≤ θU | data, IB) = α

(Integration of the Posterior density
(P(θ | Data) on θ!).

In Bayes Statistics we make direct inference on θ.
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Outline

Part 6
I Some examples from real life.
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More on Frequency vs Bayes I

A very strong point of Bayes statistics is all contained in Bayes
theorem:

P(θ | Data, IB) ∝ P(Data, IB | θ) · P(θ)

The previous formula is the mathematical description of the the
inferential process: how we can step from data to parameters.
It makes use of any existing prior knowledge P(θ), hence it is
also a tool to update the information on the parameter θ at each
measurement.
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Why we should not make blind updates

In physics the update of information is made with great care
and usually only after having checks of consistency among the
various experiments.

As an example we report the
results of measurements of
π0 meson lifetime performed
with different techniques by
four experiments (source
PDG 2004):

One of the experiments is not compatible with the others. Care
must be taken when computing the average.
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More on Frequency vs Bayes III

In the analysis of a physics experiment we always assume
ignorance of previous results and perform measurements and
analysis ignoring any previous results. (Or at least this is the
way we should do...)
Only afterwards the data of different experiments are combined,
after we have judged that the results are homogeneous.
The assessment of the compatibility of the results is a feature
of Frequency Statistics (Goodness if Fit).
Bayes Statistics can only make the update of the information
whenever a new measurement is made. The update makes the
problem of prior distribution less severe, but forbids any
comparison.
If we would insist in an analysis independent of previous
results, we would again fall in the ambiguity of priors.
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Michel parameter story (as told by TD Lee)

In the β decay, the Michel parameter ρ determines the
distribution of the electron spectrum, mainly the end point.

Before the discovery of Parity
violation it was assumed to
be zero. The V-A theory
predicts: ρ = 0.75 The plots
shows ρ, as a function of the
year of the measurement.

It is instructive to see the slow drift upwards that only after 1957
converged to the expected value.
Also interesting that at no time the “new” values lie outside the
error bar of the previous one...
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Hubble constant

The recession velocity of far away objects (quasar,
galaxies...) is proportional to the distance: Vrad = Hd . The
first evidence is due to E. Hubble. The value of the
“constant” has changed from the first evidence to
nowdays. The distance span has also enormously
changed since the first observations.

The most recent
measurements are more
precise and their value is
more stable, but the relative
fluctuations is largely
inconsistent with quoted
errors.
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The measurement of ν mass. (Physical boundary)

Frequency Statistics cannot easily incorporate boundary
conditions, which are easily handled by Bayes statistics.

Neutrino-e mass (squared) is
determined by the shape of the
end point of electron momentum in
tritium decay.
An excess of events at the head of
the spectrum (unknown origin) has
produced a shift of the measured
m2
ν toward negative, unphysical

values in all the experiments.

The plot shows a compilation of m2
ν data.
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The Troitsk neutrino mass experiment.

The end point of the integral electron energy distribution, with
the two anomalies.
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The measurement of ν mass.

If we consider the results of Stoeffel who quotes:

m2
ν = (−130± 20± 15) eV 2

in the frequency theory we should quote a Confidence Interval
( at 68%) for the neutrino mass squared is (assume Normal
Distribution):

(−105,−155) eV 2

which is clearly wrong: this interval has coverage probability
zero!
Has the Frequency Statistics failed in this case?(!).
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The measurement of ν mass.

Bayes statistics has an easy way out: even in absence of prior
experimental information the square of neutrino mass cannot
be negative, hence the prior is a step function:

P(mν < 0) = 0 P(mν ≥ 0) = Const .

All confidence intervals are always meaningful.
As an example in the case of Stoeffel results:

θ = m2
ν = (−130± 20± 15) eV 2

the upper limit for the neutrino mass square would be
determined by:

P(θ ≤ θU | Data, IB) = 0.9→ θU ≈ 10eV 2

... but let’s see how it is obtained...
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Bayes’ analysis of ν mass limit
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More on Frequency vs Bayes (7)

This “politically correct” answer hides the experimental
problem: there is an unknown background, experienced by all
experiments, and which distorts the shape of the electron
spectrum.
In these cases the most fair way of presenting the results of an
experiment is to show the data themselves.
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For Further Reading

There exist a lot of good books on probability and statistics with
different level of difficulty.
W. Feller, An Introduction to Probability theory and its
applications, Volls 1 and 2, John Wiley and Sons 1968
M.G. Kendall, Advanced theory of Statistics,Volls 1 and 2 Griffin
1958
W.T. Eadie et al,Statistical methods in experimental
Physics,North Holland 1971
A. Rotondi, P. Pedroni e A. Pievatolo: Probabilita’, Statistica e
Simulazione. Springer Italia
My lessons at the University of Pisa:
T.Del Prete: Methods of Statistical Data Analysis in High
Energy Physics.
www.pi.infn.it/atlas/documenti/note/statistica.ps.gz
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