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Maximum Likelihood

Likelihood function:
L(6; ) = p(x11,Za1, .., Tm1; @) p(T12, T22, .y Ti2; 0)
X P(T1n, Tony -0y Tonn; @) = El p(x;;0) ,

the product covers
all the n values of the m variables X.

Log-likelihood:
L=—-In(LO; x)) = —El In (p(x;;0)) ,
Max L corresponds to Min L.
For a given set of
r=x,T,...,T,
observed values, from a
X=(X,Xs....X,)

sample with density p(x;6), the ML es-
timate 6 of @ is the maximum (if any)
of the function

maxe [LLH; :E\J] — IMaxg

Ell p(@:; 9}] = L(6; z)



Maximum likelihood

or, 9 Ll:Tl p(;; 9)]

88,#: Gﬁk =0
or
oL n| 1 Op(=;0)] o |
ooy, El ;ﬂ(ﬂ:é;ﬁi) 00 ] 0, (k=12....p).

e before the trial, the likelihood function L(6:
is x to the pdf of (X, Xo,... X,);

e before the trial, the likelihood function L(6:
is a random function of X;



e frequentist view: maximize the function

L(O; x)= i[l p(x;0), or In(L(O; x)) = -l-;ln (p(x;;0)) ,

or minimize
~2In (L(6; 2)) = —23_ In (p(x;; 0))
i=1
w.r.t the parameters 6.

e Bayesian view:
maximize the posterior probability

L(16) p(6)
POl2) = i ooy a  HEOPO)

e Bayes maximization updates the prior p(60)

e when the prior p(0) is uniform (constant)
technically the frequentist and the Bayesian
approaches coincide because both maximize
L(0; ) (but the meaning is different)

e Bayesian estimators are not independent of
the transformation of the parameters, the
frequentist ones are independent of them!

Bayesians
VS
Frequentists



Why ML does work?

hypothesis

| N\

I—:Hk P(X;0)
\ |

observation

O O——

the p(x:0) form is fitted to data by maximizing the
ordinates of the observed data 5



Example

In n trial r successes have been ob-
tained. Make the ML estimate of p.
Binomial density
L=—zln(p)—(n—a)In(l —p) .
Minimum w.r.t. p:
dLl r n—=x .x
——=——+ =0 = p=—=
dp p 1—p n
Make the ML estimate of p when z;
successes on n, trials and z, successes
on n; trials have been obtained.
Two binomials with the same p:

L=p"p2(1—p " (1—p" .
With logarithms:

L = —(z1+x9) In(p)—(n1—z1+n9—x3) In(1—p) ,
dL @) +x N (N1 +ng) —x1 — 22

dp p 1—p
I +— I

0

Ty — N9



Theorems on L(#; X)

The mean value of the Score Function is zero:

%,
(g5 P(X:9)) =0
The variance of the Score Function is the Fisher
information:

Var ;ﬁlnp[x 6‘)] = <(;; Inp(X;0) — <§9111P(X 9)))2)

= <(%lnp()( ﬁ?}r}EI(OJ

These remarkable relations hold:

I(0) = <(%lnp()( ﬂ)f) <(;]; 111p(X;0]> .

<(%1”L)> <(00%mp{x ”))3 <(%l“p)2>:”‘r@’

The Cramér Rao theorem:
If T, is an unbiased estimator

1 1
n <(%IHP{X;9))E> - nl(0)

Var[T,| >



Golden results

. If T}, is the best estimator of 7(#), it
coincides with the ML estimator
(if any)

T, = T(é) .

2. the ML estimator is consistent

. under broad conditions, the ML es-
timators are asymptotically normal.
That is (0— 0) is asymptotically nor-
mal with variance

1

nl(0)
. the score function dIn L/00 has zero

mean, n/(f) variance and is asymp-
totically normal

. the variable
R MINUIT/MINOS method
2ln L(0)- In L(0)] —

tends asymptotically to x?*(p), where /

p is the dimension of ¢ n
—2InAL==-2[InL(€) -2In L(O)] = 2(O)
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Error determination

MINUIT/MINOS method

* Error determined by the range around the
Likelihood maximum for which -2InL increases by

one

—2InL

2InL,_+1 \

max \

=2InL, o

pest — §— Qest Qest + &+

0

- Errors can be

asymmetric

- Be careful about
interpretation!

- Tdentical to

PDF's o for
Gaussian models

« ML estimates

are
asymptotically
Gaussian

10



The model is given by: .
T r , Fit of
1i(@) =N [ﬂu p(x;0)dx ~ Np(zy;0)A; = Np;(0) |

’ Histograms
iy X) \+

a

L6 m) = I p(O)" . i
L= —InL(6:;n) —é n: In[pi(6)] . R

The second one correspond to the / \
pseudo-y? minimization. Indeed: /

ko n; Opi(0) k. on; — Npi(@) Opi(0) / \

> >
il N

=1pi(0) 98; = pi(@) 00
since ¥; p;(0) = 1 implies 3, dp;(0)/96; = 0. W50 w70 ® %0 1w
This
formula is
from ML I

The last member corresponds to the derivative
of

(ni — Npi(0))? _ (n; — Np;(8))*
Np(6) % n |

with a constant denominator 11

=3
i



The extended likelihood
— /u_lnI —H
L(0,n) = ]_[ i e

—InL(0,n) = _Z n; N[ (0)] + Z/Ui ()

Since 1 =N p.(0)

I L(O.n) ==, In[p,(O)] +N(©)

N is a function of O as in the case of a detector efficiency,

If there is no functional relation between N and &

the result is the same as for the non extended likelihood

12
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e A starting hypothesis (the null hy-
pothesis) is defined:
absence of the signal

e an observable must be defined:
a trigger

e a test function, that 1s a random
variable of known distribution, must
be defined: the number of trigger
follows Poisson

e at least one alternative hypothesis
must be defined:
the presence of the signal

e the rules for discriminating between
the hypotheses must be defined:
there are Bayesian and frequentist
criterial!

The other branch
of Statistics:
Hypothesis Testing

14



.. in Physics

power

true De?iqion
hypothesis Ho \ H,
H, correct|decision tyre I error
| F o Qv
no effect | good rejection | contamination
H, type ‘I error | correct decision
B 1 — [ <
effect event loss good acceptance

If H, is the discovery, the maximum power
test maximizes the discovery probability, that
is the good acceptance

15



The connection between Hyp test and parameter estimation is
the following one:

H, would be rejected at significance level o if the (1-2a) =CL
confidence interval does not contain the value L1,

p-JX"H il_cLa-24

16



When two simple hypotheses are given
Hy:0=286,, Hi:06=06,.
the most powerful test, for o given, is
L .
uesn )
L(61; X) ~

reject  Hy if {R(X)

9

)

A

P{RX) [Ho}

A Milestone:
the Neyman-Pearson
theorem

'/u

That is:
the best test statistics is R
or any random vartable T : R =y(T).

Likelihood Ratio
" Test

17



The powerful LR test is used usually on his-
tograms with N, channels:

é ](.53 + b; )”1 € —(si+bi) /nz Ne
— S = S; .

@= 1,24 b e=bi /! o i§1 ©
where n; is the number of observed events s; O
and b; are the expected signal and background Q
events, b, and s, are obtained via MC

One obtains easily:

In@ = —Sit + anln(1+b)

i=1

Likelihood
Ratio

Usually one compare the quantity
—21InQ ~ x*> (asymptotically)

obtained experimentally (n; = contents of the
experimental bins) with the background (n; =
b;) and the signal plus background (n; = s; + b;

hypotheses. In this way, for an established

signal to noise ratio, one performs the most n; from MC
powerful test, maximizing the signal discov- SGf\'\plCS'
ery probability, taking into account not only :
the global number of the events, but also the 18

shape of the distributions (see LEP data).



Steps of the likelihood ratio test

Ne 8-
In Q — _S[m_ + Z T In (J. -+ %)
i=1 i

Determine the ratio s./b; for each bin
(model + MC simulation)

19



The Higgs at LEP in 2000

On 3 November 2000 in a seminar at CERN the LEP Higgs working group pre-
sented preliminary results of an analysis indicating a possible 2.9 observation
of a 115 GeV Higgs boson [1]. Based on this analysis the four LEP collabora-
tions requested the continuation of LEF to collect more data at /s = 208 GeV.
However, the arguments presented by the LEP collaborations did not convince

the LEP management and in retrospect, it turned out that the LEP accelerator

turn-oft date of 2 November 2000 ended 1ts eleven years of forefront research.

enough. However, the statistical arguments presented by the LEP Higegs working
group were not based on these distributions, but rather on a sophisticated, though
heautiful statistical analysis of the data. Two years after the event, when the last

analysis of the LEP data indicated that_the significance of a Higos observation in
the vicinity of 115 GeV went down to less than 20 [2]. it becomes apparent that

the LEP Standard Model (SM) Higgs heritage will in fact be a lower bound on

fhe mass of the Higgs boson. However, the LEP Higgs working group has tatight
us powerful and instructive lessons of statistical methods for deriving limits and
confidence levels in the presence of mass dependent backgrounds from various
channels and experiments. These lessons will remain with us long after the lower
bound becomes outdated.




Available online at www.sciencedirect.com
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Search for the Standard Model Higgs boson at LEP

ATLEPH Collaboration !
DELPHI Collaboration -
L3 Collaboration®
OPAL Collaboration *

B . . &
The LEP Working Group for Higgs Boson Searches”
Feceived 7 March 2003; recoarvad m revised form 25 Apnl 2003; accepted 28 Apnl 2003
Editor: L. Foland:

Ahbstract

The four LEP Collaborations, ALEPH, DELFHI. L3 and OPAL, have collected a total of 2461 pl::u_1 of ete™ collision data at
centre-of-mass energies between 189 and 209 GeVV. The data are used to search for the Standard Model Higgs boson. The search
results of the four Collaborations are combined and examuned n a likehhood test for thewr consistency with two hypotheses:
the background hypothesis and the signal plus background hypothesis. The comesponding confidences have been computed as
functions of the hypothetical Higgs boson mass. A lower bound of 114.4 GeV/c? is established. at the 95% confidence level on
the mass of the Standard Model Higgs boson. The LEP data are also used to set upper bounds on the HZZ couphng for vanous
assumptions concermng the decay of the Higgs boson.
ie» 2003 Elsevier B.V. All nghts reserved. 21




ete™ —» HZ

those of the associated Z boson. The searches at LEP
encompass the four-jet final state (H — bb)(Z — qq).
the missing energy final state (H — bb)(Z — vi), the
leptonic final state (H — bb)(Z — £7£7) where £ de-
notes an electron or a muon, and the tau lepton fi-
nal states (H— bb}(Z = 777t )and (H— t777) %
(Z — qq).

A preselection 1s applied by each experiment to
reduce some of the main backgrounds. in particular,
from two-photon processes and from the radiative
return to the Z boson, ete™ — Zy (y). The remaining

22
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First problem: due to
detector efficiencies and
to undetected
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accompain the Higgs
decay products, the
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the reconstructed mass
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for true Higgs masses
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The weight plot was called
spaghetti plot 24
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Figure 6: The separation between the Signal and the Background for various
Higgs masses 1s shown by their hikelihood p.d.f's.
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Figure 8: Observed and expected behavior of the lhikelihood —2Ind) as a
function of the test-mass mpy for combined LEP experiments. The solid/red
line represents the observation; the dashed/dash-dotted lines show the median
background /signal+background expectations. The dark/green and light /vellow
shaded bands represent the 1 and 2 o probability bands about the median back-
ground expectation [2].

maximum
likelihood

Zone

28



25 [ L L L LELELE BN LN I

—‘..25 N LIL III LI II LI II LI IIII III I_ —
i ; ] =
= 21 F
o o
15 F
10 F
s B
3o effect! +—- > 0 f
______ S E
_Ig :IIIIIIIIIIIIIIIIIIIIIIII‘II L Ll IIIIIII: _Iﬂ :IIIIIIIIIIIIIIIIIIIIIII'IIIIIIIIIIIIIII
00 102 104 106 108 110 112 114 116 118 120 100 102 104 106 108 110 112 114 116 118 120
i Gelc’) m(Gelie’)
@25 @25 IIIIIIIIIIIIIIIIIIIIIIIIII
S S
220 F 220
o o
15 E 15 F
10 10 F
5k 5 E
o f - 0 F
5 SRR ] 5 S e backerowmd -
B md 3 B T ;
[ - E‘af}?c-ecbed signal + backgrdimd ] -+ Expectad signal + backgroumd
- JE BT ETE TR BT PN P T SR T PR FTh - |
Iﬂ!ﬂﬂ 02 104 106 108 110 112 114 116 1158 120 Iﬂlﬂﬂ 02 104 106 108 110 112 114 116 118 120
g Gelic’) m(Gelic’)

Figure 9: Observed and expected behavior of the likelihood —21In @) as a function of
the test-mass mpy for the various experiments. The solid /red line represents the obser-
vation; the dashed/dash-dotted lines show the median background/signal+background
expectations. The dark/green and light /vellow shaded bands represent the 1 and 2 o
probability bands about the median background expectation [2].

29



S
=

-2In(Q)

10 F

20

-30

ALEPH
DELPHI
L3
OPAL
2003

N Y 15 O VS T OO O U

signal plus Hackground

My

106 108

110 1

lr'llll R ek S ) K B I 50/0
12 11‘1 116 118 120

m(GeV/c%)

m, > 114.4 GeV/c2  CL=95% .



Conclusions

The broad minimum of the combined LEF likelihood
from my ~ 115 — 118 GeV which crosses the expectation for s4+b around myg ~
116 GeV can be interpreted as a preference for a Standard Model Higgs boson
at this mass range, however, at less than the 2o level. When the LEP Higgs
working group presented these results for the first time the significance was 2.9+
[1], and this relatively high significance generated a storm which unfortunately
turned out to be in a tea cup...

The ALEPH ohserved likelihood has a 3o signal-like behavior around mpy ~
114 GeV, which led the collaboration to claim a possible observation of a SM
Higgs boson [3]. This behavior originated mainly from the 4-jet channel and its
significance is reduced when all experiments are combined. No other experiment
or channel mdicated a signal-like behavior.

32



Conclusions

‘The maximum likelihood (ML) is the best estimator in
the case of parametric statistics problems

*‘The likelihood ratio is the maximum power test, that
maximize the discovery potential

*The likelihood ratio permits to match toghether
different experiments and to realize the Neyman
frequentist scheme

33



Signal over
Background in Physics

How to count

Some case studies

Statistics 3



The case of Pentaquark

The pentaquark is a baryon with five valence quarks.
The clearest signature is that of a

vudds, S=+1

pentaquark, the unique baryon with positive strangeness.

The s antiquark cannot annihilate with the u or d quark
by the strong interaction.
Some models predict a mass around 1.5 GeV and a very
small width (~ 0.015 GeV)

The recent pentaquark saga began at 2002 PANIC con-
ference when Nakano measured the following reaction
on a Carbon nucleus

yn—=O"K - K Kn

35



. From the Curtis Meyer review (Miami 2004)
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FIG. 3. (a) The MM¢ . spectrum [Eq. (2)] for KtK™ pro-
ductions for the signal sample (solid histogram) and for events
from the SC with a proton hit in the 55D (dashed histogram).
(b) The MM, - spectrum for the signal sample (solid histo-
gram) and for events from the LH, (dotted histogram) nor-
malized by a fit in the region above 1.59 GeV /c*.

™~

in Ein _Zfin Eﬁ” /2

The neutron presence was detected by the MM, g+ k-
missing mass

The vp - KT K™ p reaction was eliminated by direct pro-

2
— Qin Pi, —Zfin Pfin _| ton detection.

The neutron was reconstructed from the missing mo-

mentum and energy of K™ and K.

The background was measured from a LI, target.
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FIG. 3. (a) The !"ﬂ‘ﬂx* spectrum [Eq. (2)] for KYK ™~ pro-
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(b} The MM ;- spectrum for the signal sample (solid histo-

gram) and for events from the LH; (dotted histogram) nor-

malized by a fit in the region above 1.59 GeV /c*.

012002-3
The background level in the peak region is estimated to
be 17.0 = 2.2 * .8, where the first uncertainty is the

error in the fitting in the region above 1.59 GeV/¢* and

the second is a statistical uncertainty in the peak region.
The combined uncertainty of the background level is

+2.8. The estimated number of the events above the
background level is 19.0 = 2.8, which corresponds to a

Gaussian significance of 4.6%}3c (19.0/4/17.0 = 4.6).



The signal over background

There are two way to count in Physics experiments

e Poissonian counting
The samples are collected in runs of fixed time. The

background is evaluated with MC methods, with
blank runs, with sideband counting, etc

e Binomial counting The runs collect a total number
N; of events and N, of them pass the selection cuts
(tagging) or the triggers.

Signal and background have different probabilities
to pass these cuts

To avoid mistakes the notation is very important

e NV counts considered as a random variable
e n counts considered as the result of an experiment

e 1 expected value of the counting distribution (Bi-
nomial or Poissonian).



Poissonian counting
Fundamental theorem

Let’s count a Poisson variable N with mean )\ with a
detector of efficiency . The registered number of counts
n follows the distribution

—I\N I
T - € }" N'! n _ N—n
P(n|N)P(N) = N -n!(N—n]IE (1 —¢)

By using the new variables

e—)t — e—lee—itl—ej

m=N—n

AN — }"N—ﬂ}‘n = }‘m}‘n
one has

e—}n.a (}_‘E)‘-‘l E—A{I—E}Am(l . E:]m.
n! m/!

P(n|N)P(N) =

The number of counts n is still an independent Poisson
variable with mean \e!
(also the lost counts m with mean A(1 — <))
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{N = n} events are observed, that are supposed to come
from a distribution with expected value p, + p,, where

the expected amount of signal p, is unknown.

N A= Hp
Hy €
p(n, ) =
n!
n
pln, o+ ps) = (”'bJr'“ 2 e T
mn.
signal +~ background
background y
\\\JJ.L-. Upt Hs

number of events

o =backg. SL
B = signal 1- CL

1—-3 =signal CL. or power of the test

(1)



signal + background

background .
gm\ s Ho+ Hs a < 2.8-1077 bo discovery
Py Bytps ) — .
D 1y) e a < 1.3-107% 30 strong evidence
a < 2.3-107% 25 weak evidence

l-a=®(Z) > 1=0(1-a)

o = backe. SL number of events where
B =sig:uaul 1I-CL 7 €7/ /3
|- =signal CL or power of the test DL = ]—._f exp(—t* /2)dt = 1+ertz/v2)
2T e 2
true Decision
Hypothesis Hy H,
Hy correct decision Type I error
l -« &
background good rejection false acceptance
H, Type II error Correct decision
signal + a 1-53

background false exclusion good acceptance

Discovery Probability or Discovery Potential (DP):
the power 1 — [ when the critical value n is decided
before the measurement and when p(n; u, + ;) is true. 42




Poissonian Signal detection

There are many formulas used for detecting a signal
over the background (30, 50, 60, and so on)
N = N; + N, are the registered counts

oo NN _MaN-N_ N R
"7 UN¥YN, VN+N, VJVN+N,
Hypothesis
test
This is the N . v
most common S, = ~— M _Ft N T WRONG
Vs VHs Vs
Sw = VN == /N, + Ny — Vs Recently
Proposed

(hypothesis test)

Please take care of the notation: often u is exchanged
with N, and so on, the formulae are obscure and used

improperly!! 43



Hypothesis test I
N — 14

Hy

true density




Parameter estimation

N =N, +. /N +N, =N +/N,+2N,
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Poissonian Signal detection

When the background is well known people use
N —pu
S, — m
\ b

Recently Bityukov and Krasnikov (2000) proposed

Ssh:\/ﬁ_m:ﬁ/wﬁ;‘fb—m

Proof: In gaussian approx (g, > 10), the abscissa n
satisfies the equation

N—py _pg+p,—N

t=——2= 00— = No=yf g (i +14) 0 =g+, =1,
;ub /us + /ub
Therefore, one can define the statistic signal + background

Sbs =2 (\/W _\/;b) bad{gm&_ \ JETR

with expectation value

=2 ‘//ub + U _\/lu/b/

and unit variance: Var[S,.] = 4Var[\/7] 4(

pn: Wy

i) -

number of events



Poissonian Signal detection
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The background level in the peak region is estimated to
be 17.0% 22 * 1.8, where the first uncertainty is the

Y
o
§ error in the fitting in the region above 1.59 GeV /¢* and
&~ the second is a statistical uncertainty in the peak region.
§ The combined uncertainty of the background level is
= *+2.8. The estimated number of the events above the
z background level is 19.0 = 2.8, which™sgrrespon a
~  Gaussian significance of 4.6715a (19.0L¢ = 4.0).
19
after the fit, \/ 19 + 17 + 17 :2'6
error on the area:
"\;!I?afA 3 * 07
19
=3.8
V17 +2.82
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FIG. 4 (color online). The nK ™' invariant mass spectrum in
the reaction yp — 7T K~ KT (n) with the cut L(:sﬁ'ﬂ_ =, 3 and
cosf® - < 0.6. 6% ot and 6% g+ are the angles between the 7T and
Kt mcsc:-ns and photon bca m in the center-of-mass system. The
background function we used in the fit was obtained from the
simulation. The inset shows the nK™ invariant mass spectrum
with only the cﬂsﬁ; = ().8 cut.
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(CLAS Collaboration)

The final nK+ effective mass distribution (Fig. 4) was
fitted by the sum of a Gaussian function and a background
function obtained from the simulation. The fit parameters
are Ng+ =41 =10, M = 1555 = 1 MeV/¢?, and I' =
26 + 7 MeV /c® (FWHM), where the errors are statisti-
cal. The systematic mass scale uncertainty is estimated to
be 10 MeV /c?. This uncertainty is larger than our
previously reported uncertainty [6] because of the differ-
ent energy range and running conditions and is mainly
due to the momentum calibration of the CLAS detector
and the photon beam energy calibration. The statistical
significance for the fit in Fig. 4 over a 40 MeV/¢? mass
window is calculated as Np//Ng. where Ny is the number
of counts in the background it under the peak and Np is
the number of counts in the peak. We estimate the signifi-
cance to be 7.8 = 1.0e. The uncertainty of 1.0e is due to
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Evidence for a narrow |S| = 1 baryon state at a mass of 1528 MeV in quasi-real
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Photoproduction on a deuterium target

1

FIG. 2: Distribution in invariant mass of the prtas™ sys
tem subject to various constraints described in the text. The
experimental data are represented by the filled circles with
statistical error bars, while the fitted smooth curves result in
the indicated position and o width of the peak of interest.
In panel a), the PyTHIAG Monte Carlo simulation is repre-
sented by the gray shaded histogram, the mixed-event model
normalised to the PYTHIAG simulation is represented by the
fine-binned histogram, and the fitted curve is described in
the text. In panel b), a fit to the data of a Gaussian plus a
third-order polynomial is shown.
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HERMES : 27.6 positron beam on deuterium

TABLE I: Mass values and experimental widths, with their statistical and systematic uncertainties, for the &4 from the two fits,
labelled by a) and b), shown in the corresponding panels of Fig. 2. Rows a”) and b') are based on the same background models
as rows a) and b) respectively, but a different mass reconstruction expression that is expected to result in better resolution.
Also shown are the mumber of events in the peak No and the background Nu, both evaluated from the functions fitted to the
mass distribution, and the results for the naive significance J"-."f",-“wf;_'f? and realistic significance N /dN;. The systematic
uncertainties are common (correlated) between rows of the table.

et mass FWHM i NE° naive Total signif.

[MeV] [MeV] in +20 in +2o signit. Ny 48N,
a 152702321 22+5+2 T4 145 G.1a TBx 18 43T
a' 15370 +£2.5 2.1 24+5+12 L 158 BT 53+ 20 4.2a
b 15280 £2.6 £ 2.1 | e st} 144 47 a b 37T
b') 15278 £3.0x 2.1 52 52 + 16 J4a

IAI=1528 + 2.6(stat) MeV

D
o
SR

zui— g — N — N, _N{;-}-NS—NEJ_ N,
i " VN+N, VN+N,  JN+N,

145 L5 155 16 165 L7 74/\/74+145+74 :43

M Tp) [GeV]

10 |




S tatl Stl CS Experiment  Signal Background Significance
£ = 8 Publ. &, & &L
1 vb Spring8 19 17 466 46 32 26
£y = 5 Spring8 56 162 4.4 3.8 2.9
2 = /s+6b SPAHIR 55 56 48¢ 7.3 52 43
3 CLAS (d) 43 54 520 5.9 44 3.5
£z = CLAS (p) 41 35 7.80 6.9 47 3.9
5+ 2b DIANA 29 44 440 44 34 27
v 18 9 6.76 6.0 35 3.0
HERMES 51 150 4.3-6.2¢ 4.2 3.6 2.7
Y 57 95 4-6g 59 47 37
ZEUS 230 1080 466 7.0 6.4 4.7
SVD 35 93 5.66 3.6 3.1 24
NOMAD 33 59 430 4.3 3.4 27
NA49 38 43 426 5.8 42 34
NA49 69 75 5.8¢ 8.0 58 4.7
H1 50.6 51.7 5-66 7.0 50 4.1

No 5o effect! 53



All these methods estimate frue values
through measured guantities .....

but ...
Consider N, and N ~Pois(4y,) with 4 known
N, =N, +N,
N = Not N N ) Ny
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A first rigorous solution

R. Cousins et al, NIM A 595(2008)480

The joint probability of observing nq, and ngyg 1s the product of
Poisson probabilities for ngy, and ngy, and can be rewritten as the
product of a single Poisson probability with mean g, = oy + Logs
for the total number of events n,, and the binomial probability
that this total is divided as observed if the binomial parameter p 1s

P = Hon/teor = 1/(1 + 2): _ Hy
on 0 ﬂ’_/’loff //uon :uoff //ub
n
E\. I“I:IFI In':'n e |“I:lff I off
P(Ngp. Nygr) = Hon Hofr
ngn! I’I[,ﬂr!
Lon 1L n
_ e (Han + Mot }(-I“[JI'I N .|“[Jﬁ_} tot (9)
Meot!

Nt ! _ .
% tot .‘(Jnnn {1 _ f}}mtnt Mon ]'_ ( 10)
Non!(Ntot — Non)!

A 1s the known normalization constant supposing that the
on measurement does not contain the signal (H, hyp.)
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A rigorous solution

Niat !
D ' tot '
Non!(Mtot — Non)!

x P = Hon/ oy = 1/(1 +2)
or lp A= Hege | Lo
Ppi = Z P(jnwe: p) = B(p.Ngp. T +Nger) /BN 1+ Nggr)

Y‘!Dn
Z=d'1=-p=—o (p 7 — \/Eerf_l('l — 2p)
where /

1 +erf(Z/V?2)
2

I}ﬂun (1 _ }r}}mtut—nnn]

—1-— P

- Z
D(Z) = %/ exp(—t?/2)dt =
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For the simple on/off problem with ng, = 140, ny¢ = 100, and
T = 1.2, the ROOT commands are:

double n_on 140.

doublen_off = 100.

double tau = 1.2

double P_Bi TMath: :Betalncomplete(l./(l.+tau),n_on,n_off+1)
double Z_Bi sgrt(2) *TMath: :ErfInverse(l - 2*P_Bi)

Pentaquark: n_on=36, n_off= 17*2.17 = 36.7,

t= A =17/2.8% = 2,17, Z=3.07
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A 2nd rigorous solution

R. Cousins et al, NIM A 595(2008)480

([l + Ly, ) (T Ly, )™
"?JP _ H J'I'IIb E—{}45+}Jh]1"b—1e—mh [ED:I
Mon - Mo

while for the Gaussian-mean background problem with either
absolute or relative oy, it is

Man ' 2
P = fl“'E T 4""”1]] p—{Hs+im) ]__ exp (_ ffl"r’b — l“'b] ) [2] :I

1
Mon: N 2no?

where as discussed below we have explored the effect of
truncating the Gaussian pdf in jy, and renormalizing prior to
forming “¢.

Using either #p or %, one obtains the log-likelihood ratio

(g, [yl i)
‘___.] — 5& A 5
(Hs) Fifg, [ty)

~2InA(ug)<F;' (1 —2z)  (22)
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A 2nd rigourous solution

Zo = \/—21In A(us = 0) (24)

where the likelihood ratio is computed using #p or &, as
appropriate for the problem.

For the on/off problem and %, the explicit result obtained
from Eq. (24) was given by Li and Ma (their Eq. 17) [8]:

1,2
Noni 1 T) R In H.,:,,[ff] T) ) .

Zp, = Ji(nm In (25)

Pentaquark: n_on=36, n_off= 17*2.17 = 36.7,

t= A =17/2.8% = 2,17, Z=3.25 %9



Table 1
Test cases and significance results

Reference [40] |41 [42] [43] [44] [44] [45] 146] 47] 48]
Non 4 6 9 17 50 67 200 523 498 426 2119449

Mot 5 1878  17.83 401 55 15 10 2327 493434 23650096

T 5.0 1444 4.69 10.56 2.0 0.5 0.1 5.99 1.0 11.21

ity 1.0 13 3.8 38 27.5 30.0 100.0 388.6 493434 2109732

S = Non — [l 3.0 47 5.2 13.2 22.5 37 100 134 4992 9717

O} 0.447 0.3 0.9 0.6 3.71 7.75 31.6 8.1 702.4 4338
f=0b/ it 0447 0231 0237 0158 0135 0258 0316 0.0207 000142 0.00020¢
Reported p 0003  0.027  2E-06

Reported Z 2.7 1.9 4.6 59 5.0 64

See conclusion

Zgi = Zr binomial 1.66 2.63 1.82 446 2.93 2.89 2.20 5.93 5.01 6.40
Zy Bayes Gaussian 1.88 2.71 1.94 4.55 3.08 3.44 2.90 5.93 5.02 6.40
Zp, profile likelihood 1.95 2381 1.99 4.57 3.02 3.04 2.38 5.93 5.01 6.41
Zzg variance stabilization 1.93 2.66 1.98 422 3.00 3.07 2.39 5.86 5.01 6.40

Not recommended

Zgin = 8/ +/ ot/ T 2.24 3.59 217 5.67 3.11 2.89 2.18 6.16 5.01 6.41

Zon =S/ v/Mon + Nof / T2 1.46 1.90 1.66 3.17 2.82 3.28 2.89 5.54 5.01 6.40

Zesh = $/\/Tip + 5 1.50 1.92 1.73 320 3.18 4.52 7.07 5.88 7.07 6.67

Zyo =5/ /Tt (1 + 1)/ 72 2.74 3.99 242 6.47 3.50 3.90 3.02 6.31 5.03 6.41
lgnore gy,

Zp Poisson: ignore a, 2.08 2.84 2.14 4.87 3.80 5.76 8.76 6.44 7.09 6.69

Zgp = S/ /Ty 3.00 412 2.67 6.77 4.29 6.76 10.00 6.82 Z11 6.69

Unsuccessful ad hockery
Poisson: uy, — [ty + 0y, 1.56 2.51 1.64 447 3.04 4.24
s/\/lie + 0y 249 3.72 240 6.29 4.03 6.02

! 6.09 6.39
2 6.75 7.10 6.69

Co W
~] N
—
(o]




Binomial counting: candidate
selection

A sample N; can be considered as an ensemble of signal
and background events:

Ni = Ns+ Ny

The measurement is a linear operator M that acts on
N, + Nj, and divides this sample into events that pass the
selection (the “yes” events N,) and events that do not
pass the selection (the “no” events N,).

Ny = Ng+ Ny=N,+ N,

(3) = (%)
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(3) =2 (5)

e is the efficiency on the signal events and b that on the
background:

NyH:ENﬁ ; NHSZ(I_E)NS

Nyp = bNy , Np=(1-0)Nyp,

Since

N, = N,,+ Ny =¢eN,+bN, .

Ny = Nps+Npp=(1—¢)Ns+ (1L - b)Ny

the M matrix becomes:

g b
M_(I—E l—b) '
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The inverse of the measurement matrix is:

1 1—-b —b
_1_
M _E—b(s—l a) ’

When the knowledge of the € and b-efficiencies is achieved,

one can solve the general Measurement Problem (MP):

having measured N, and N, from a sample
Ny = Ny, + N,,, what are Ny and N7 :
(1—b)N, —bN, N, —bN,

Ny =

e—b  e—b
N, — (e = 1)N, + &N, _ N, — (1 — )Ny ZENf—Ny
e—5b e—b e—b
When e > band ¢, b < 1,
Ny

st?, Ny = Ny — N, .

The errors come from the binomial formula (X, is not

random):
_ 1
o[N,] = o[Ny] = — \/ N,(1— N,/Ny)
When there are more backgmund sources
b — by = Zbiwi , Wy = all .
i Z@Z Nbi 63

Problem: when & ~ b the system is ill-conditioned!



Having found N, and V,, the percentage of signal in
the accepted events N, can be found with the Bayes Bayes
formula (used in a frequentist way, because P(S) is not

subjective) formu | qQ
P(S|T) = P(T|S) P(S)
~ P(T|S) P(S)+ P(T|B) P(B)

= N,/N; = percentage of events in the triggered sample
= Np/N; = percentage of background in the triggered sample

= & = probability that a signal event passes the selection

b = probability that a background event passes the selection

3
e
|

= probability that a selected event is the signal

N, — bN. £ N, eN
S|IT) = Yy L = 1—pt) =208
P = ey = (o) =

P(B|T)

_P(S|T) ’

Eb Nf -‘5‘ —3/2
o[P(H|S)] = sz\/N — Ny/N) = - NN

In summary,

3 Ny eb 3 64
P(S|T) ~ 1—b-—2 N, N3/2
(SIT) E—b( Ny) e—p Y




The top quark discovery of
CDF

The CDF experiment claimed the op quark discovery
(Phys. Rev. Lett.74(1995)2626) with two different se-
lection methods of discriminating the signal

tt — WbWb
from background:

e SVX tagging: b jets identification by searching for
secondary vertices in the Silicon Vertex detector;

e SLT tagging: to search for an additional soft lepton
from semileptonic b decay

t&g Nt Ny £ % b% i?\,-'s/iﬁ\‘?i J\rfP(SlT)

SVX 203 27 4245 3.34+0.1 025707 225750

SLT 203 23 2042 7.6+0.1 0.2477;  13.2755

The error on N,;/N; from the standard formula is £0.06
for SVX and +0.18 for SLT, slightly underestimated.
To take into account the uncertainties on the efficiencies
(nuisance parameters) a grid MC is necessary
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The bootstrap method for
confidence levels

With fixed efficiencies we have the binomial/gaussian
distribution

| countratio | h1

Entries 1000000

Mean 0.2585
RMS 0.06157

80000

70000 | 0.258 +-0.063 |
60000
50000
40000
30000
20000

10000
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The grid method for confidence

levels

For each value of p = N,/N; a sample of 100000 events
is generated sampling randomly the ¢ and b efficiencies.

| Lower limit |

2500

2000

1500

1000

500

[ 0.194 |

h2
Entries 100000
Mean 0.1967
EMS 0.06372

0 0.1 0.2 0.3 0.4 0.5 0.6




The bootstrap method for
confidence levels

In this case also the approximate bootstrap method
gives the same result.
This method is called Parametric Bootstrap

| countratio | h1
Entries 1000000
~ Mean 0.263
14000[— RMS 0.0727
12000~ 0.258 + 0.076 - 0.066
10000
anun:—
EI]EII]:—
4nun:—
2000(—
n:' I T N
0 0.7 0.8 0.9 1
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The non parametric
Bootstrap
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Consider a sample X containing N objects. We need an

estimate of 6 as (X).

No model of the X distribution is known or considered The non parame.hnc

Statisticians have elaborated the following (non para- Sampling meThOdS

metric) methods:

e Jackknife (Quenouille, 1949):

N samples are generated leaving out one element at
a time;

The best
one Il

® Subsampling:
S resamples of dimension Np are created by repeat-
edly sampling without replacement from th
imental sample. Obviously one ha

~

/

e Bootstrap (Efron 1979):
S resamples of dimension Np are created by repeat-
edly sampling with replacement from the experi-
mental sample. Usually Ng = N is set.

e Permutation:
used in the test between two hypotheses, by resam-
pling in a way that moves observations between the
two groups, under the assumption that the null hy-
pothesis is true

These methods, familiar among statisticians, are prac-
tically not (yet) used by physicists (only 3 papers with.___ Up to 2006
non parametric Bootstrap!)




Non parametric Bootstrap

NORMAL POPULATION

unknown mean p

g
B
T

ﬂ One SRS of size n.

T/ \n
Theory
L
Sampling distribution
(b)
-
Resample of size n =~ _
r X
Resample of size n =~ _
» X
Resample of size n _
» X
»

POPULATION
unknown mean p

(c)

Bootstrap distribution



hias

bootstrap
estimate of bias

Center: A statistic is biased as an estimate of the parameter if its sam-
pling distribution is not centered at the true value of the parameter. We
can check bias by seeing whether the bootstrap distribution of the statis-
tic is centered at the value of the statistic for the original sample.

More precisely, the bias of a statistic is the difference between the mean
of its sampling distribution and the true value of the parameter. The boot-
strap estimate of bias is the difference between the mean of the bootstrap
distribution and the value of the statistic in the original sample.

Spread: The bootstrap standard error of a statistic is the standard devia-

tion of its bootstrap distribution. The bootstrap standard error estimates
the standard deviation of the sampling distribution of the statistic,
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The non parametric

BOOTSTRAP

Consider a sample X containing N objects. We need an
estimate of ¢ as

0(X)
Using the Bootstrap sample, we obtain the estimator

0* = 0(X*)

The Bootstrap samples have expectation values 6* that
differ from the true one ¢ (bias), but ...
the Bootstrap approximates the distribution of

6—0
with the distribution of

o~

6* — @

obtained by resampling.
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Limits of non parametric

BOOTSTRAP

Drawback: the Bootstrap samples are correlated.
Some important results on this:

e the sharing of the same elements in different sam-
ples reduces the variance s, of the (re)samples:

Sies —7 (1—

where p = Np/N in subsampli
ment;

g without replace-

e the sampling with replacement i
the variance of the (re)samples

bootstrap increases

res

e in many cases in the bootstrap the positive bias due
to the within sample correlation and the negative
bias due to the between sample correlation cancel

exactly
V1= pyp1=1
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The non parametric

BOOTSTRAP

When does the Bootstrap work?

For the consistency of the method, the reliability must
be Bootstrap-checked, through the Bootstrap samples
themselves!

The important checks are:

e check the symmetry of the Bootstrap distribution,
that assures the bootstrap property. Find if neces-
sary a transformation h such as

-~ -~

h(6) — k() and h(6*) — h(H)

are pivotal, that is follow the same distribution.
Then make the estimate of the h intervals before
anti-transforming with A~!

e make different estimates with different bootstrap
samples (with replacement) Ny < N and verify that
the variances scales as 1/Np. This verify the condi-

tion
V1—=py/p1 =1

There exists a wide statistical literature on the sub-
ject....
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The non parametric

BOOTSTRAP

A possible use of the Bootstrap in Nuclear physics

W
dﬁ- b 1
4—momenta =, /L experimental
result
X
bootstrap A

4—momenta
__%_ X
error on W

4—momenta

4—momenta

4—momenta
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BOOTSTRAP FOR COMPARING TWO POPULATIONS

Given independent SRSs of sizes rn and m from two populations:

1. Draw a resample of size n with replacement from the first sample
and a separate resample of size 7 from the second sample. Compute a
statistic that compares the two groups, such as the difference between
the two sample means.

2. Repeat this resampling process hundreds of times.

3. Construct the bootstrap distribution of the statistic. Inspect its
shape, bias, and bootstrap standard error in the usual way.

Useful when the two samples are
signal and background....

77



The dual Bootstrap

Fix the background on one sample and
calculated the peak signal
with another sample to avoid biases !

Repeat on bootstrap samples (dual bootstrap) s



Standard analysis in
nuclear physics experiments

e the 4-momenta are reconstructed and the
analysis is performed

e errors are calculated following the standard
(gaussian) theory

e a MC toy model is invented and the anal-
ysis procedure is checked on this model

e at this point the procedure could be further
checked on bootstrapped data!
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Conclusions

‘Poissonian Counting: most of the tests

do not consider the error on background and
overestimate the signal. Often true (mean) values
and measured values are improperly confused.
Use the Binomial formula!

‘Binomial counting: a general theory there exists
and should be applied.

‘The errors should be calculated by MC methods
and the procedure checked with MC toy models

‘Nonparametric Bootstrap methods should be used
also by physicists
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*Back-up slides
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Example

An urn with three marbles

p

®e® O (e

=1/3  p=2/3

An experiment with 4 drawings:

plz;n=4,p) =

4!
z!(4 — x)

pf(1—p)t*

x=0 x=1 x=2 x=3 x=4

p(z;4,p=1/3)
p(z;4,p =2/3)

16/81 32/81 24/81 8/81 1/81
1/81 8/81 24/81 32/81 16/81

The

P
p

likelihood estimate:
=1/3if0<z <1
=2/3if3<x <4

no maximum if z = 2
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1. the Bayesian refuses the concept of an ideal
ensemble of repeated, identical experiments;

2. the probabilities of the errors of I and II
kind are then replaced by the probabilities
of the hypotheses

test statistics parameters
Bayesian certain random
frequentist random certain

A BIG problem:

P(data|Hy)P(Hy)
x; P(data| H;) P(H;)

unknown!

P(Hg|data) =

A solution: the Relative belief updating ratio:
- P(Hy|data)  P(datal|H,)P(Hy)
- P(H,|data)  P(data|H,)P(H,)

e the R values help the model choice, but the
choice is subjective!!

R

e the P(H,), P(H,) priors are necessary

® o, B ,1— 3 are not calculated

Bayesian
Hypothesis
test
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Gravitational Bursts
(P.Astone, G.Pizzella,workshop (2000))

n. counts are observed in a time T
r, and r, are the background and signal fre-
quencies:

ns = rsl unknown , ny, = 131" measured

Relative belief updating ratio
with P(Hy) = P(H):

—(rs+ry)T [( 4+ )f]nc Ne
‘ B e Ts T'p)t —Ts
R(T_g:. Mg, Thy T) - e—'r‘g,'T' [TE]T]??IC T (1 " Tﬁ')

Ifn.=0
R=e"T

depends on the signal frequency only.
Arbitrary Standard Sensitivity Bound:

R=e"" =005 —r, =299 ~ 3

Rule: this is the sensitivity of the experiment
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Gravitational bursts

24
10 / B ——— =5
________ n:]
\'I'u
VW ———— n=0
1 - III
L ,I
|
— 0.1 |I
|
|
— 0.01 \
| I| TS
0.01

Figure 1: ratio I for the poisson intensity parameter r in units

of events per month for an expected background rate r
event /month and for n = 0, 1, 5 observed events

T T\ e
e 'T'ST (1 + _S) , Ty = 1
L

Bayesian Conclusions:

= 1

e If "s< 0.1 the data are not relevant;

e r.> 20 is excluded by the experiment;
e if N=5 the most probable hypothesis is 89
Ty =4



InlL(6)
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Figure 3: Evolution of the event weight In(1 + s/b) with test-mass myg for the events

with the largest weight at my = 115 GeV. The labels correspond to the candidate

numbers in the first column of Table 1. The sudden increase in the weight of the

OPAL missing-energy candidate labeled “13" at mpg = 107 GeV is due to the

switching from the low-mass to high-mass optimization of the search at that mass.

A similar increase 1s observed in the case of the L3 four-jet candidate labeled “17”

which 1s due to a test-mass dependent attribution of the jet-pairs to the Z and 93
Higgs bosons. The Figure is taken from [2].



Binomial, Poisson, Gauss

Inb(X:p)=Inn!—In(n — X)) —In X!+ XInp+ (n— X)In(l — p)
Inp(X;p)=XInpg—InX!—p

lng(X;ﬂwJ):ln( 1 )_E(X_H)E

2mo 2 a
These are random functions.
d X n—-X X-—-np
—Inb(X;p) = — — =
Op (X:p) p l—=p p(l-p)
d X X —u
—hnp(X:pu) = ——1= ,
@a“ (X5 ) p p
X — 1 X —pu
—1 X:_ ) = —_— _—— f—
o ng(X;u,o) . ( J) p
according to {é%lnp(X; ﬂ)_} = (
Information:
1 . np(l — p) n
(») p*(1 — p)? ( P)) p*(1—=p)?  p(l—p)
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Estimators

e Estimator of 6
If X 1s a data sample with dimen-
sion n of a m-dimensional random
variable X having p(X;f#) as a pdf,
an estimator is a statistics

To( X) = ta( X)
for which T : S — 6.

e Consistent estimator of ¢
lim P{|T,, — 0| <e}=1, Ve>0.

e Correct or unbiased estimator

(T,) =46, Vn

® The most efficient estimator
T, is more efficient than @), if

Var[T),] < Var|Q,], Vf8cO.
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From the n values z; of a Gaussian vari-
able, find the ML estimate of mean and
variance

Likelihood function:

— 5ty Tilzi—p)?

LEF=

1
L —
(lu’? U) ( ,-"Qﬂ_ U)n
The log-likelihood:
_.n NS Sy
‘E’(Ju: U) T +2 IH(Z?TU ) T 252 i:l(Ii _,'_L) !
Put the derivative =0:
oL 1
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The LEF Working Group for Higgs Boson Searches / Physics Letters B 363 (2003 61-75

3

MC samples

ty density

(a)

Dhscrved

L .
my, = 113 GeVic™

- Expected for hackgro

EP

wnel

0.1 | e Bl gy,
] !
= i -
M *& ]
signal p 1,
I KI B F ';..
0.02 '
0 [ . P - .dld M - L ._l._-.-x‘.;‘i.ﬁu -
-15 -10 -5 0 s 10 15
-2 In(Q)
£°005 F (b) LEP ] & (c)
W L my = 110 GeVie™ W
E E 25
= .04 | b =]
£ £ oz
= 0.03 =
3 o
] =T O
= =
(=T | 1 e (=9
1
“.{'1 [~ “_“___-'-' - :_.'
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=ik = L] =20 ] 2 400 il = o | -2
-2 In(Q)

With a mass of 116 GeV
10% of the background
only experiments give
the observed signal

LEP
my = 120 GeVic®

With a Higgs
mass of

120 GeV the
data are not
able to
discriminate
between the
hypotheses

BT .

With a Higgs mass of 110 GeV the data are
consistent with the background only hypothesis

=]
[

4 L]

-2 In(Q)
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e it holds for simple hypotheses

e for composite hypotheses like

HU : leﬂ, ggzb
Hl ) Ql#ﬂ, Qg#b

or
Hy : 9:{13
Hl 920&
the NP ratio
L(6|H
R (6] Ho)

ma}i[ﬁ'e@ﬂL(Q'Hl)

is optimal, but only asymptotically

(theory is complicated!!)

e if H; has r free parameters more than
H,, then

—2In R ~ x*(r)

A Milestone:
the Neyman-Pearson
theorem: limitations
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likelihood

7~

I'1 =18 +:J|E~.a:‘f‘~H

2 st. dev

max

likelihood

mean / r.m.s.

— .
B68.3 % confidence

Fig. 18, Likelihood ratio limits (lett) and Bayesian limits (right)
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Expt E.n Decay channel | m,.. (GeV) In{l + s/b)

at 115 GeV
1 | ALEPH 206.6 4-jet 114.1 1.76
2 | ALEPH  206.6 4-1et 114.4 1.44
3 | ALEPH  206.4 4-jet 109.9 0.59
4 | L3 206.4 E-miss 115.0 0.53
5 | ALEPH 205.1 Lept 117.3 0.49
6 | ALEPH 2065 Taus 115.2 0.45
7 | OPAL 206.4 4-1et 111.2 (.43
8 | ALEPH 2064 4-jet 114.4 0.41
9 | L3 206.4 4-jet 108.3 0.30
10 | DELPHI 206.6 4-jet 110.7 0.28
11 | ALEPH 2074 4-jet 102.8 0.27
12 | DELPHI 206.6 4-jet 07.4 0.23
13 | OPAL 201.5 E-miss 108.2 0.22
14 | L3 206.4 E-miss 110.1 0.21
15 | ALEPH  206.5 4-jet 114.2 0.19
16 | DELPHI 206.6 4-jet 108.2 0.19
17 | L3 206.6 4-jet 109.6 0.18

Table 1: Properties of the candidates with the highest weight at my = 115 GeV. Table

is taken from [2].
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Evenis/ 3 (}E\}"C: Evenis / 3 GeV/ :

Events [ 3 GeV/ :

40

20

10

=]

10

h

Vs = 200-210 GeV

—+ (LEP 5/B=0.3
—— background
mmm hZ Signal

(=115 GeV)

all = 109 GeV
27

cnd= 200 by
bgd= 201.75 20.41
sgl= 10.26 6.11

+

Vs =200-210 GeV

—+ EP 5/B=1.0

—— background
mmm hZ Signal
(=115 GeV)

all = 109 GeV

cnd= £9
bgd= 55.26 3.56
sgl= 4.66

.94

b

cnd= 24

sgl= 1.74 1.78

1 =1 I —— y—l

Vs = 200-210 GeV

—— EP 5/B=2.0

—— background

mmm hZ Signal
(=115 GeV)

all fl 108 GeV

d= 22.79% 1.13

alle

=

20 40

60

80 100 120
Reconstructed Mass my [G-e\-'e"c:]

LEP real data

Three selections of the
reconstructed Higgs mass
of 115 GeV to obtain
0.5/1/2/ times as many
expected signal as
Background above 109 GeV
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Steps of the likelihood ratio test

Ne 8-
In Q — _S[m_ + Z T In (J. -+ %)
i=1 i

Determine the ratio s./b; for each bin
(model + MC simulation)
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Likelihood function

Given a sample (x, ..., x,), the likelihood function expresses the
probability density of the sample, as a function of the unknown
parameters

L=]]fs6-,0,)
1=1

Sometimes the used notation for parameters is the same as for
conditional probability:

f]01,- -, 0,)

If the size n of the sample is also a random variable, the
extended likelihood function is also used:

L:p(nagla 79n)Hf(3:?,7917 79n)
1=1

Where pis most of the times a Poisson distribution whose
average is a function of the unknown parameters

In many cases it is convenient touse —-InL or -2InL

- I, > 2
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Finaly, we calculate the signal statistical significance as:

where compute two likelihoods:
10

InLg = > (—bj +n;-Inb;)

=1
10

In LB—I—B = Z {_bf —Si+n;-In (bf T S,‘})

=1
b;, s;, n; are the number of predicted background and signal

evenis and observed data eventis in the /-th bin
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