
• Statistica 1: Neyman vs Bayes. 

frequenze in esp. di conteggio

• Statistica 2: likelihood ratio e test di ipotesi

segnale su fondo

• Track fitting: tracking in GEANT3 &GEANT4

filtri di  Kalman e global fitting
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Frequentist approach

Bayesian approach

Statistics I
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Statistical problems in Particle Physics, Astrophysics and Cosmology
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Frequentist 
confidence
intervals

x
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x1
x2

x

x= x1 < < x= x2  < < 2

x

1< < 2 when   x1 < x <x2

True value

Possible
interval

CL

P 1< < 2)  = P(x1 < x<x2) = CL
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NEYMAN 
INTEGRALS

x

x

Elementary statistics
may be

WRONG!!
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Because  P{Q} does not

contain the parameter!
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Estimation of the sample mean

since

Due to the Central Limit theorem we have a pivot quantity 
when N>>1

Hence:
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Hence, we have three methods to find confidence
intervals with the Neyman (frequentist) technique:

• Graphical method (Neyman band)

•Analytic with the Neyman Integrals 
(Clopper Pearson method)

• Inversion method (pivot variable)

x

x
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1

)1(

4

1

2||
)1(

||
2

2

2

2

2

n

t
n

ff

n

t
t

n

t
n

t
f

pt

n

pp

pf

n

ff
tfpn )1(1

t  is the quantile of the  normal distribution

t

t=1, area 84%
Quantile =0.84
P[|f-p|<t ]= 68%

CLt

n

pp

pF
Pt

p

pF
P

)1(

||

][

||

Counting experiments: Binomial case

Wilson interval
(1934)

Wald (1950)
Standard in Physics



17

xtxx

Counting experiments: Poisson case

Wilson interval (1934)

Wald (1950)
Standard in Physics
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Why to complicate all this?

18



Why to complicate all this?
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The 90% CL gaussian upper limit

Observed
value

90% area

10% area

Meaning II: a larger upper limit should give values less 
than the observed one in less than 10% of the experiments   

1.28

Meaning III: the probability to be wrong is 10%

Meaning I: with this upper limit, values less than the
observed one are possible with a probability <10%
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muon a selects trigger the that prob.

pion a selects trigger the that prob.

piona betoprob.

muona betoprob.

trigger a give to pion a for prob.

trigger a give to muon a  for prob.
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The  probability  to be  a muon after the trigger  P( |T):
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The  trigger problem



10.000 particles

9000  
1.000 

950450 

8550 50

enrichment 950/(950+450) =  68%

Efficiency  (950+450)/10.000 = 14%

trigger
trigger

prior
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Bayesian credible interval
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2n
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20 events have been generated and 5 passed the cut 
What is the estimation of the efficiency with CL=90%?

Frequentist result:

Bayesian result:

=[0.104, 0.455]

=[0.122, 0.423]

x=5, n=20, CL=90%
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Bayes.This is not frequentist
but can be tested
in a frequentist way
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Standard in Physics

Exact frequentist
Clopper Pearson (1934)  (PDG)



Coverage simulation
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x =  gRandom  → Binomial(p,N)            → x
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Simulate many x with a true p
and check when the intervals 
contain the true value p . Compare 
this frequency with the stated CL

CL=0.95, n=50



Simulate many x with a true p and check when the intervals contain 
the true value p . Compare this frequency with the stated CL
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CL=0.90, n=20
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In the estimation of the efficiency (probability) 
the coverage is “chaotic”

The new standard (not yet for physicists)
is to use the exact frequentist or the formula

The standard formula

should be abandoned
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A further improvement:
The continuity correction is equivalent to
The Clopper-Pearson formula

1is1  1 gaussian,

,/)5.0(,/)5.0(

)1(1],,0[,0

)1(],1,[,
,

1

)1(

4

1

2

2/

/1
22

/1
11

2

2/

2

2

2/
2/

2

2/

2

2/

t,α-CLt

nxfnxf

CLppx

CLppnx

n

t

n

ff

n

t
t

n

t

n

t
f

n

n

This should become the standard 
formula also for physicists
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N=50  CL=0.90
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N=50  CL=0.95



The likelihood ratio method
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Binomial Coverage simulation
max likelihood constraint

nk k

Feldman & Cousins, Phys. Rev. D  57(1998)3873

UNIFIED method
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N=50  CL=0.90
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N=50  CL=0.95
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N=20  CL=090



The problem persists also
with large samples!
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0.90
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N=20  CL=0.90
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N=20  CL=0.90   Interval amplitude

likelihood

frequentist

Wilson cc

Wilson

x
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N=20  CL=0.90  Interval    limits

x



51

(2001) n

ff
tfn )1(1

2/)1( 22

0

knk

x

k k

n

2/)1( 22

0

knk

x

k k

n
1

)1(

4

1

2
2

2

2

2

2

n

t
n

ff

n

t
t

n

t
n

t
f



52

xtxx

Counting experiments: Poisson case
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Bayes.This is not frequentist
but can be tested
in a frequentist way

Wald (1950)
Standard in Physics

Exact frequentist
Clopper Pearson (1934)  (PDG)
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Poissonian Coverage simulation

CL=68%
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Poissonian Coverage simulation

CL=90%



The Neyman-FC integrals
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Poissonian Coverage simulation
max likelihood constraint
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Poissonian Coverage simulation
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Poissonian Coverage simulation

CL=90%
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Counting experiments: new formula for the 
Poisson case

Wilson interval with Continuity correction
gives the same results as … 

Exact frequentist
Clopper Pearson (1934)  (PDG)
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The Unitarity Triangle
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• Quark mixing is described 

by the CKM matrix

• Unitarity relations on matrix 

elements lead to a triangle 

in the complex plane
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Luca Lista Statistical Methods for Data 

Analysis
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A Bayesian application: UTFit

• UTFit: Bayesian determination of the 
CKM unitarity triangle
– Many experimental and theoretical inputs 

combined as product of PDF
– Resulting likelihood interpreted as Bayesian 

PDF in the UT plane

• Inputs:

– Standard Model experimental measurements 
and parameters 

– Experimental constraints



Luca Lista Statistical Methods for Data 

Analysis
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Combine the constraints

• Given {xi} parameters and {ci} constraints

• Define the combined PDF
– ƒ( ρ, η, x1, x2 , ..., xN | c1, c2 , ..., cM ) ∝

∏j=1,M ƒj(cj | ρ, η, x1, x2 , ..., xN) 
∏i=1,N ƒi(xi)⋅ ƒo (ρ, η)

– PDF taken from experiments, wherever it is possible

• Determine the PDF of (ρ, η) integrating over the 
remaining parameters
– ƒ(ρ, η) ∝

∫ ∏j=1,M ƒj(cj | ρ, η, x1, x2 , ..., xN) 
∏i=1,N ƒi(xi)⋅ ƒo (ρ, η) 

A priori PDF

=

=



Statistical Methods for Data 

Analysis
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Unitarity Triangle fit

68%, 95% 

contours



Luca Lista Statistical Methods for Data 

Analysis
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PDFs for and 



Luca Lista Statistical Methods for Data 

Analysis
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Projections on other observables
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A Frequentist application: RFit

• RFit: to choose a point in the plane, 
and ask for the best set of the 
parameters for this points. The 2

values give the  requested confidence 
region.

• No a priori distribution of parameters 
is requested
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Conclusions
• The usual formulae used by physicists in counting

experimets should be abandoned

• By adopting a practical attitude, also bayesian
formulae can be tested in a frequentist way

• frequentism is the best way to give the results
of an experiment in  the form

x 
but other forms are also possible

• physicists should use Bayes formulae to parametrize
the previous (th or exp)

knowledge, not the ignorance
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Quantum Mechanics: 
frequentist or bayesian?
Born or Bohr?

dx2||

The standard interpretation is 
frequentist



END
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x

Neyman integrals

Bootstrap );(1);( xFxF

Search for pivotal variables

This method avoids the graphic procedure and 
the resolution of the Neyman integrals
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From coin tossing to physics:
the efficiency measurement

Valid also for

k=0 and k=n

ArXiv:physics/0701199v1
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