CygnoDAQ report

Sept. 17th, 2020

DAQ meeting report

- Meeting every Wednesday 16:00 Rome time:
 - https://agenda.infn.it/category/1149/
 - Google Meet link room: https://meet.google.com/rri-ivwo-heg
 - Share folders for material, ideas, reports:
 https://drive.google.com/drive/folders/1PFlbnkz3uSkQ_3XQ-Eya-OP4MKO2ckuj

Detector overview

System composition:

- The detector is composed of 18 readout regions, each equipped with 1 sCMOS sensor and 4 Photomultipliers.
- TOTAL: 18 sCMOS sensors and 72 Photomultipliers.

Components definition:

- sCMOS sensor (ORCA Fusion)
- PMT model (? H3695-10, H10721-4, others)
- GEM readout needed ?

Important characteristics:

Max. image acq. rate = 10 Hz

DAQ proposal

Defined issues:

- PM acquisition electronics custom solution
 - CBPF (has started development)
- Camera readout commercial solution
 - UFJF-CBPF (components being defined)

Open issues:

- Amplifier module needed?
 - Depends on PM amplitude range and signal duration
 - ROMA1 UFJF (under study)
- Image-based trigger custom GPU server
 - Depends on compatibility with software algorithms
 - UFJF ROMA1 (under study)
- GEM readout needed?
 - ROMA1 LNF
- Hardware integration
 - Trigger, Time and Control signal distribution
 - Deadtime, Busy signal distribution
 - Event building
- Software integration
 - Framework: MIDAS preferred (experienced manpower; dedicated and easy to integrate slow-control electronics is available); decision to be taken soon to order appropriate electronics.
 - ROMA1

SiPM readout:

- Survey and selection of technologies/devices: ADC, FPGA, μC. DONE
- Drawing electrical schematics (see next slide): analog input circuit, ADC connections, microcontroller circuit.
- Drawing electrical schematics: FPGA circuit. NEXT

Camera readout:

- Survey and selection of technologies/models (frame grabber, GPU, DAQ server). DONE
- Survey of storage solutions for physics data (images/waveforms).
- Studying the best option of GPU based on programming issues and performance (Amaro, Igor, Tiago). DOING

SiPM digitizer schematics

Camera readout system

Item	Device	Manufacturer	Model	Vendor contact	Qty	Unit Price (USD)	Total Price (USD)
1	Frame Grabber	Kaya	Komodo KY-FGK-801		3	\$1.750,00	\$5.250,00
2	Server	Supermicro	SYS-2028GR-TRHT		1	\$3.942,00	\$3.942,00
3	GPU	NVidia	VCQRTX5000-PB		1	\$2.199,99	\$2.199,99
						TOTAL	\$11.391,99