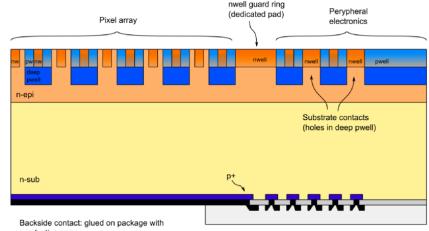
# **Silicon Pixels and Strips**

### RD\_FCC Referees Meeting September 16<sup>th</sup>, 2020 Remote Connection

Attilio Andreazza (INFN-MI) Massimo Caccia (Insubria) Manuel Da Rocha Rolo (INFN-TO) Romualdo Santoro (Insubria)



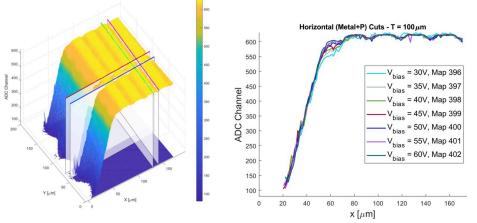
Istituto Nazionale di Fisica Nucleare


### ARCADIA (INFN CSNV Call Project 2019-2021)

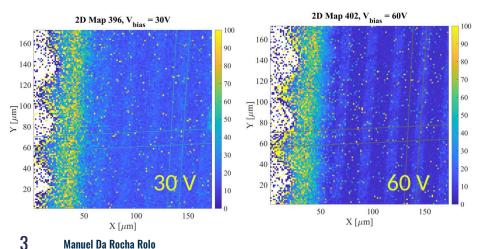
Advanced Readout CMOS Architectures with Depleted Integrated sensor Arrays



#### **Ongoing activity towards a CMOS sensor design and fabrication platform allowing for:**


- Active sensor thickness in the range 50  $\mu$ m to 500  $\mu$ m or more; ¥
- Operation in full depletion with fast charge collection only by drift, small charge collecting electrode for \* optimal signal-to-noise ratio;
- Scalable readout architecture with ultra-low power capability (O(10 mW/cm2)); ⋇
- Compatibility with standard CMOS fabrication processes: concept study with small-scale test structure \*(SEED), technology demonstration with large area sensors (ARCADIA)
- Technology: 110nm CMOS node (quad-well, both PMOS and NMOS), high-resistivity bulk \*
- Custom patterned backside, patented process developed in collaboration with LFoundry




### **Characterisation with SEED pseudo-matrices**



Cuts along the Metal + P and Metal + N lines on the energy map with varying bias voltages show uniform CCE above FD with ~1.7 % loss over metals (100 µm thick)



Standard deviation maps show the expected higher electronic noise when the sensor is not depleted (below 30 V), due to the higher top capacitance.



#### (RUĐER BOŠKOVIĆ INSTITUTE)\* Zagreb, Croatia

- 600 keV to 2 MeV Tandetron 0
- TANDEM 1-6 MeV proton source 0
- LASER TCT laboratory  $\bigcirc$

13580135901360013610136201363013640

21450

21440 21430

21420

2141

21400



21450 21440

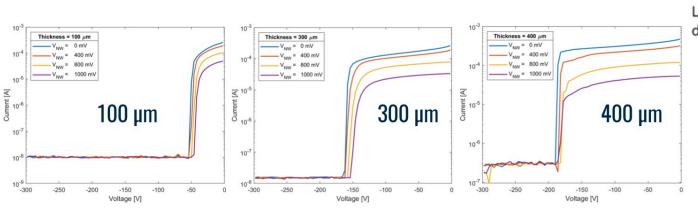
21430

21420

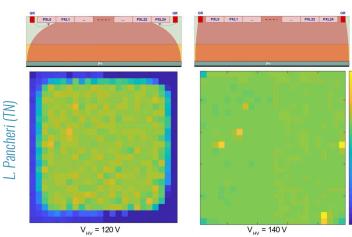
21410

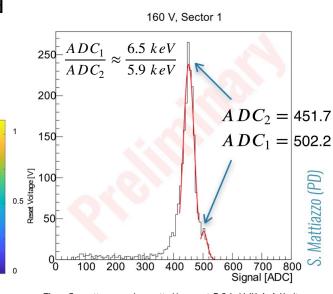
x [µm]

21400

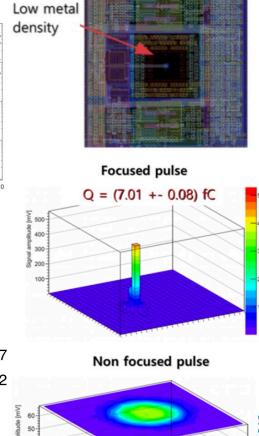

2020-09-16 RD FCC Meeting

x [µm]


### **Characterisation with SEED MATISSE**


Full depletion studies in 100-300-400 µm prototypes



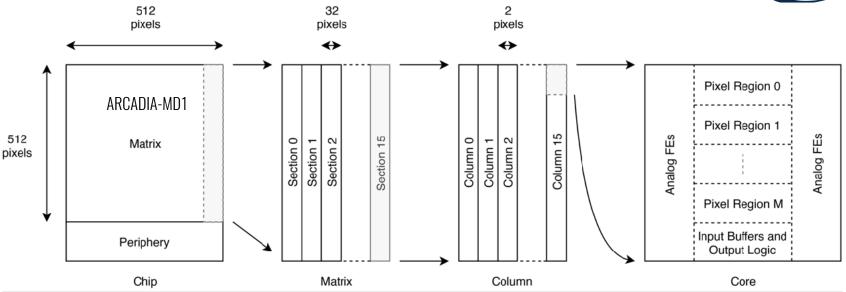



Map of pixel reset voltage (MATISSE 24x24 pixel matrix) as a function of the back-side voltage applied to the sensor. Depletion starts from the back-side.





Preliminary results with <sup>55</sup>Fe




40 30 20 Olave FEE2018

The <sup>55</sup>Fe emits monochromatic X-rays at 5.9 keV ( $K_{a}$ ). A  $K_{e}$  line at 6.5 keV is also emitted with a relative probability below 5%.

### **ARCADIA - Demonstrator Chip**





- Pixel size 25 μm x 25 μm: process, back-side pattern and geometry validated in silicon (both MATISSE and pseudo-matrices, electrical, laser, radioactive source and microbeam).
- Matrix core 512 x 512, "side-abuttable" to accomodate a 1024 x 512 silicon active area (2.56 x 1.28 cm<sup>2</sup>).
  Matrix and EoC architecture, data links and payload ID: scalable to 2048 x 2048\*
- Triggerless binary data readout, event rate up to 10-100 MHz/cm<sup>2</sup>
- ★ First <u>engineering run with ARCADIA-MD1 by 09/2020</u>, second full CMOS maskset during spring 2021, funding available for 3 engineering runs (secured over <u>0.4M€ extra funding</u> from synergy with EU Projects)



#### Rimosso materiale "Internal Use Only", contattare darochar@to.infn.it

### **ATLASpix3 Large Silicon Systems**



#### \* R&D for the large are part of the detector:

◆ All Si-tracker or Si-Wrapper for IDEA and TPC based tracking systems: 50-100 m2

#### \* Proposal submitted to CEPC including interests from Italian groups:

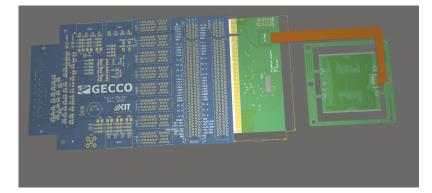
 China: Harbin, IHEP, NWPU, Shandong, SJTU, Tsingua, UTSTC: Germany: KIT; Italy: Milano, Pisa, Torino; UK: Bristol, Daresbury, Edinburgh, Lancaster, Liverpool, RAL, Sheffield, Warwick

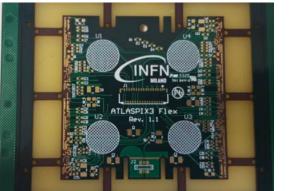
#### \* Develop a full CMOS pixel solution:

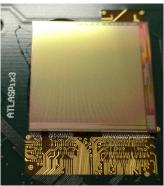
- Full CMOS technology costs and power consumptions are becoming nearer to the strips
- ◆ If trend continues, it may effectively replace them with a more performant detector

| CMS Upgrade          | Double Strips           | Macropixels+Strips      | Hybrid Pixels            | DMAPS@FCCee                 |
|----------------------|-------------------------|-------------------------|--------------------------|-----------------------------|
| Area                 | 192 m <sup>2</sup>      | 25 m <sup>2</sup>       | 4.9 m <sup>2</sup>       | 100-200 m <sup>2</sup>      |
| Power density        | 27 mW/cm <sup>2</sup>   | 89 mW/cm <sup>2</sup>   | 700 mW/cm <sup>2</sup>   | <150 mW/cm <sup>2</sup>     |
| Module cost<br>(TDR) | 26990 kCHF              | 20780 kCHF              | 11691 kCHF               |                             |
|                      | 140 kCHF/m <sup>2</sup> | 830 kCHF/m <sup>2</sup> | 2400 kCHF/m <sup>2</sup> | 400-500 kCHF/m <sup>2</sup> |

### ATLASpix3 R&D plans





#### \* Initial prototyping using ATLASPIX3


- ✤ Full size 2x2 cm chip from ATLAS developments
- Demonstrating module and mini-stave assembly
- $\bullet$  Two wafers (one thinned to 150  $\mu$ m) dedicated to the initial effort:
  - practicing the DAQ system (design by KIT, production done by Chinese groups, now begin distributed)
  - test module assembly (Milano): flex circuits now being populated
  - integration of modules in the test system (UK)

#### \* Further generations of the sensors are in development:

- ♦ FCEPCPix1 in AMS,
- possible porting to other foundries







## **ATLASpix3 Financial requests for 2021**



#### **\*** Perform a further iteration in module assembly:

- current flex hybrid implementation followed the KISS (keep it simple and safe) principle;
- ★ a second generation would implement features for use in system tests and a more realistic environment:
  - reduce number of layers (possible by dropping options implemented in the 2020 version)
  - design for operation within a serial powering chain
- \* Additional sensors will be needed for building mini-staves
  - same masks as ATLASPIX3, so non-recurring costs already paid in ATLASPIX3 original submission. Contributions from various FA, cost should be 2k€/wafer + taxes.

#### **\*** Funding requests:

| Categoria | Sez. | Capitolo |                                             | [k€] |
|-----------|------|----------|---------------------------------------------|------|
| 3         | MI   | Consumi  | Flex hybrid                                 | 5    |
| 3         | MI   | Consumi  | Acquisto wafer ATLASPIX3 (2 wafer x 2.5 k€) | 5    |