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General Relativity

Einstein theorized that smaller 
masses travel toward larger masses 
because the smaller objects travel 

through space that is warped by the 
larger object

• Imagine space as a 
stretched rubber surface. 

• A mass on the surface will 
cause a deformation. 

• Another mass dropped 
onto the surface will roll 
toward that mass. 
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GR experimental tests

Mercury’s orbit
perihelion shifts forward

an extra 43”/century
compared to

Newton’s theory

Bending of light
First observed during the solar 
eclipse of 1919 by Sir Arthur 
Eddington, when the Sun was 
silhouetted against the Hyades 

star cluster
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gravitational waves

• time dependent gravitational 
fields come from the acceleration 
of masses and propagate away 
from their sources as a space-
time warpage at the speed of light

•In the weak-field limit, linear    
equation in “transverse-traceless 
gauge”

gravitational radiation
binary inspiral of compact objectsT
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where hµνµνµνµν is a small perturbation of the space-time metric
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Gravitational Waves: the evidence

PSR 1913 + 16 Neutron Binary System
Separated by 106miles, 
m1 = 1.4m����; m2 = 1.36m����;

Prediction from general relativity
• spiral in by 3 mm/orbit
• merge in 300 million years

Emission of gravitational waves

time of periastron relative to that
expected if the orbital separation

remained constant. 

Hulse & Taylor
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GW strength
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4≈•Quadrupole radiation
�monopole forbidden by conservation of E
�dipole forbidden by mom. conservation

•For highly non-spherical source, like binary    
system with mass M and separation L
solar mass neutron stars at L=20km located at

� Solar system   (1au)                h~10-9

� Milky Way (10kpc)                h~10-18

�Virgo cluster (15Mpc)            h~10-21

�“Deep space” (200Mpc)         h~10-22

�Hubble distance (3000Mpc)   h~10-23

1 pc = 3 x 1016 m

2MLQ ≈

1au x 10-21 = 10-10 m 
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Detectors

LIGO fused 
silica mirror
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Detectors

LIGO, VIRGO, GEO, TAMA, AIGO,  …

Interferometers
wideband (~10000 Hz)

ALLEGRO, AURIGA, 
EXPLORER, NAUTILUS, 

NIOBE, …

Bars
narrowband (~1Hz)

recent improvements (~10Hz)

UF graduate student Kate Dooley 
inspecting a LIGO optic.J.Weber working on the bar  

1968  2008  
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How LIGO works

measure differential arm length
∆∆∆∆L = ∆∆∆∆Lx – ∆∆∆∆Ly

h ~ ∆∆∆∆L/L

free masses
suspended test masses

for L=4000m
and h~10 -21

∆∆∆∆L ~ 10-17 m
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Detectors

� This is the first untriggered all-sky search with LIGO and Virgo detectors
� Complementary antenna patterns

G1
H1
H2
L1
V1

no
is

e,
 s

tr
ai

n/
H

z1
/2

Hz

1
 105.2

4000

)(
)( 23−×≈=

m

fx
fSstrain noise:



S.Klimenko, February 23, 2010, INFN Legrano Lab colloquium, LIGO-G1000121-v1 

Angular sensitivity

Detector response to two GW polarizations 

( ) ( ) ××++ += hFhF ψφθψφθξ ,,,,

θ,φθ,φθ,φθ,φ – source coordinates in the detector frame, ψ ψ ψ ψ – polarization angle
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Binary Neutron Stars (BNS) range 
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BNS range: distance to a 1.4-1.4 M binary detected at              
Signal-to-Noise Ratio (SNR) of 8 averaged over sky an d 
polarization angle

1 pc = 30.8x1012 km = 3.26 light years
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Network of GW interferometers

AIGO

GEO Virgo TAMALHO

LLO

• increase sky coverage
• increase detection 

confidence
• reconstruction of GW 

sources, including 
waveforms and sky  
coordinates ����
GW  astronomy

Virgo detector, V1 LLO detector, L1
22

×+ + FF
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LSC and Virgo

• more than 670 scientists with wide diversity of  
backgrounds

LIGO 
observatory

• during the S5 the Virgo detector joined the run and         
the LIGO-Virgo collaboration was formed
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Gravitational Wave Sources

�“ un-modeled bursts”
� Supernovae, GRBs, mergers, SGR, …. 

�“inspiral” - Compact Binary Coalescence
� particular class of modeled bursts

�“periodic” - pulsars 

�“stochastic” - unresolved signals, GWs from Big Bang 

focus of
this talk
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Compact Binary Coalescence 

NS-NS, NS-BH, BH-BH binary systems

� Standard candle for LIGO 
� large expected signal
� rich physics at high field regime
� well understood theoretically

� Template searches
� correlate pre-calculated signal templates with data ����

need exact source model

NS-NS

Chirp waveform
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Binary Black Holes (BH-BH)

Caltech-Cornell: http://www.black-holes.org/
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Low Mass CBC sources

NS(1.35Mo)-BHBH-BH

�First year of S5 run: [ Preprint arXiv:0901.0302v3 ]
� Measured rate limits:

� Cumulative luminosity C L ~ 10000 L10

� Expected rates 1
10

1-4-5 Ly )10510(5 :NSNS −−⋅−⋅−
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T- observation
time

L10 = 1010 L
☼,B    

(1 Milky Way = 1.7 L10)
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Inspiral Mergers

Compact binary mergers

� high mass CBC (>25Mo) are better detected via their 
merger and ring-down waves 

� merger waveforms can be calculated numerically, but
� computationally expensive
� no numerical waveforms for NS-NS and NS-BH

( )M
M

merger
oHzf 20

205 ⋅≈
M<20Mo
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Covering CBC parameter space
� Detection of CBC sources in a wide range of source parameters 

requires construction of large template banks

� Develop complementary burst search for more robust dete ction 
of CBC sources that may be missed by template searche s due to 
incomplete template banks: particularly massive BH-BH, BH-NS

10           30           50           70          90 Mo

Mpc

120

90

60

30 

template search

30                        50             70          90 Mo

Mpc

300

200

100 

un-modeled burst search

BH-BH horizon distance as a function of total mass 
for optimally oriented sources detected at SNR of 8

UF grad. student
Chris Pankow: S5 BH-BH
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� GW from supernova 
� Several Core-Collapse SN Mechanisms
� Direct “live” information from the supernova engine.
� Directly linked to the ubiquitous multi-D dynamics in the post-

shock region

Supernova

Axisymmetric core collapse

258 1010 cMEGW ⊕
−− −≈
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G-modes

� Acoustic supernova: [Ott et al. 

2006, Burrows et al. 2007, Ott

2008, ]

258 1010 cMEGW ⊕
−− −≈

Burrows et al. 2006, 2007, Ott et al. 2006
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Supernova rate

SN Rate

1/50 yr - Milky Way
(~10kpc)

3/yr - out to Virgo 
cluster (16Mpc)

Karachentsev et al. 2004;
Cappellaro et al. 1999



S5/VSR1 All-Sky Burst Search
�model independent, 
however sensitive to a 
wide class of sources: 
binary mergers, SN, SGR,..

� frequency band 64–2000 
Hz (64-6000 Hz for S5);   
no GW bursts signals 
seen in S1/S2/S3/S4

� use ad-hoc waveforms 
(Sine-Gaussian, Gaussian, 
etc.) to determine 
detection sensitivity

�Several algorithms, 
including cWB used for 
previous S2,S3,S4 
searches

arXiv:1002.1036
Combined upper limits for the entire S5/VSR1

Local experts: G.Vedovato, M.Drago, 
G.Prodi,V.Re, F.Salemi (now AEI)
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Comparison with previous measurements

� LIGO 2009: first year of S5 run (64-6000 Hz)
3.6 events/year below 2kHz and 5.4 events/year above 2kHz 

at 90% and best sensitivity of 6x10-22 Hz-1/2

� IGEC 2007: (~50 Hz around 900 Hz)
8.4 events/year at  95% CL and sensitivity of ~10-20 Hz-1/2

� LIGO 2007: S4 run (64-1600Hz)
55 events/year at 90% and best sensitivity of 1.5x10-21 Hz-1/2

� IGEC 2003: (few Hz around 900 Hz)
1.5 events/year at  95% CL, and sensitivity of ~10-19 Hz-1/2

� LIGO-Virgo 2010: (50-6000kHz) entire S5/VSR1 run 
2 events/year below 2kHz and 2.2 events/year above 2kHz 

at 90% and best sensitivity of 5.6x10-22 Hz-1/2

the most sensitive un-triggered burst search performed so far

PRD 80 102001 (2009)
PRD 80 102002 (2009)

PRD 68, 022001 (2003)

CQG 24 (2007)

PRD 76, 102001 (2007)
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Astrophysical sensitivity

� To estimate the astrophysical sensitivity we calculate the 
amount of mass (MGW), converted into isotropic GW burst 
energy at a given distance r, that would be sufficient to be 
detected by the search with 50% efficiency. 

� For 153 Hz, Q = 9 sine-Gaussians, hrss= 6×10−22 Hz−1/2. 
� Assuming isotropic emission at a distance of 10 kpc, this 

corresponds to MGW = 1.8 ×10−8 M (10-7 M for S4) where M 
is the solar mass. 

� For a source in the Virgo galaxy cluster, approximately 
16Mpc away, the same hrss50% would be produced by a 
mass conversion of roughly 0.046M (0.25 in S4). 

222
2

rssGW hfr
G

c
M
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Mass equivalent sensitivity

22
0

32

)2(
4 rssGW hf

G

cr
E π≈

� strain sensitivity can be converted to energy sensitivity 
assuming isotropic GW emission

supernova:
expected yield
10-9 – 10-5Mo 

Ott, et al.

need advanced
detectors to
see beyond 
our Galaxy

16Mpc

10kpc
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Supernova 

� GW signals from a core collapse supernova are expec ted to 
be produced at a much higher frequency (up to a few  kHz) 
and also with a relatively small GW energy output  
(10−9−10−5 Mc2).

� The axi-symmetric core collapse signals D1 and D4 h ave 
most of the signal energy in the 2−6 kHz frequency band 
and MGW < 10−8 M - consistent with the estimated detection 
range 

� For the acoustic supernova 
model s25WW as much as   
8×10−5 M may be converted to 
gravitational waves with 
frequency around  940 Hz ����

detection range 35 kpc .

Ott et al, 2006
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results: rate density ULs

� Given an isotropic distribution of sources with 
amplitude ho at a distance ro the rate density limit  is 

� The result can be interpreted as a rate density lim it for 
a source with isotropic GW emission of 2

0cMEGW =

∫
∞ −
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results: rate density ULs

� Rate density limit is rescaled as 
For a source emitting                                at 150 Hz

2
0cMEGW =assuming

where M0 is solar mass
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0
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Gamma-ray bursts

Based on Eric Chassande-Mottin’s ILLIAS slide.

� long and short GRBs

�Collaps of massive stars
� NS/NS or NS/BH mergers
�Soft Gamma Repeaters 

(Chapman et al., 2008) �

Nakar, Physics Reports 
442 (2007) 166-236
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GRB 070201 – short (<1sec)

R.A. = 11.089 deg, 
Dec  = 42.308 deg 

DM31≈≈≈≈770 kpc

� Possible progenitors for 
short GRBs: 

� NS/NS or NS/BH 
mergers - emit strong 
gravitational waves

� Soft Gamma Repeater 
(SGR) - may emit GW   
but weaker 

Hurley et al. 2007, Pal’Shin 2007
refined error box, ≈ 1.1°
from the center of M31

Detected by Konus-Wind, INTEGRAL, Swift, MESSENGER
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<number>

GRB070201 triggered searchGRB070201 triggered search

Burst search:
Cannot exclude a Soft Gamma Repeater (SGR) 
at M31 distance
Upper limit: EGW<8x1050 ergs (<4x10-4 Moc

2)

Inspiral search:
excludes binary 
progenitor at >99% 
confidence level

Exclusion of merger 
at larger distances: 
see plot

No gravitational waves detected

DM31

25%

50%

75%

90%
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Searches for GWs Associated with Other 
GRBs

� Inspiral search
�Sub-sample of 22 

short GRBs
� [–5,+1] second time 

window around time of 
GRB

�Matched filtering 
followed by 
coincidence test based 
on time and mass 
parameters

� “Loudest event”
analysis

There were 137 GRBs (35 with redshifts) during the S5/VSR1 run 
with data from two or more LIGO+Virgo detectors

� Burst search
�All 137 GRBs
� [–120,+60] second time 

window around time of 
GRB

�Coherent multi-detector 
burst search with 2, 3, or 
4 detectors

� “Loudest event” analysis
Preprint: arXiv:0908.3824

(For details, see: B13.04 – González, “Searches for coalescence of binary systems 
in LIGO and Virgo data” and K13.03 – Cadonati, “Probing the Association of GW 
and Gamma-Ray Bursts with LIGO and Virgo”)

� No significant signal found for any individual GRB, 
and no statistical excess for any subset
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Lower Limits on Distance to Each S5/VSR1 
GRB

� For GW inspiral
signals:

(Short GRBs)

� For hypothetical GW 
bursts:

Model-
dependent

� We didn’t get lucky with a 
close-enough event
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The stochastic GW background

� An isotropic Stochastic GW 
background could come 
from:
� Primordial universe 

(inflation)
� Incoherent sum of point 

emitters isotropically
distributed over the sky

� Expressed a fraction of 
closure density of the 
universe: 

� Big Bang Nucleosynthesis
limit: 

Ω0, ΒΒΝ < 1.1 x 10-5

Credit: Caltech Space Radiation Laboratory 
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LIGO S5 result:
Ω0 < 6.9 x 10-6

Abbott, et al. “An upper limit on the stochastic gravitational-wave 
background of cosmological origin”, Nature., V460: 990 (2009).
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L1H1V1 x-sensitivity

�time-frequency analysis
�coherent network analysis

Advanced Algorithms
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time-frequency analysis

� Identify GW “ecological calls” as a patterns on the TF plane

� Characterize by strength, duration, frequency band,...

� Particularly useful if signal is buried in the broad-band noise

Ecological calls of
the Miniopterus australis the Macroderma gigas

fr
eq

u
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Wavelet transformations 

Daubechies

� basis  {Ψ({Ψ({Ψ({Ψ(t)})})})} :  :  :  :  
� bank of template waveforms 
� ΨΨΨΨ0 -mother wavelet 

Fourier

wavelet  - natural basis for bursts, low spectral leakage
used to produce TF data with good localization of transients

( )ktjj
jk −Ψ=Ψ 22 0

2/

not
local

Haar local
orthogonal
not smooth

local, 
smooth,

not
orthogonal

MarrMexican
hat local

orthogonal
smooth



S.Klimenko, February 23, 2010, INFN Legrano Lab colloquium, LIGO-G1000121-v1 

Wavelet scalograms
decomposition of discrete time series x[t] 

with sampling rate R and n samples in basis {ΨΨΨΨιιιι(t)}

time-scale(frequency) spectrograms

d4

d3

d2

d1

d0

a

a. wavelet dyadic tree b. wavelet binary tree

d0

d1

d2

a

n/4

critically sampled
DWT

∆∆∆∆fx∆∆∆∆t=0.5 LP        HP

n/2
n

n/8
…

fN=R/2

T=n/R
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Observations with multiple detectors

L1: 1.1e-22

V1: 1.3e-22

H1: 1.5e-22

noise+sg250Hz (τ=0.02sec,  θ=20, φ=150)

Likelihood-combained
data from all 3 detectors
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Likelihood Analysis

� Likelihood ratio (global fit to the data)

� Matched filter for bursts
� Noise model: usually multivariate Gaussian noise

� signal model (detector response) 

� find best solution for h+,hx at maximum of ΛΛΛΛ
� variation of ΛΛΛΛ over h+,hx – large number of free parameters

� Need at least 2 detectors, but preferably 3 or more

parameters free,    ,][][][ −+= ×+××++ hhFihFihi
rrr

ξ

]exp[)0|( 1 TXXXp −Σ−∝

)0|(

)|(

Xp

hXp=Λ

Σ-noise covariance matrix

Flanagan,  Hughes, PRD 57 4577 (1998)
Klimenko et al,  PRD 72, 122002 (2005)
Klimenko et al, CQG 25, 114029, (2008)

( ) ( ) ]exp[)|( 1 TXXhXp ξξ −Σ−−∝ −
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Search Algorithms: cWB

� Coherent WaveBurst: coherent network algorithm base d 
on constrained likelihood analysis. (64-6000Hz)

� Detection statistics
� Network correlation coefficient cc - rejection of gli tches
� network correlated amplitude ηηηη – event ranking statistic

L1H1H2V1
1.2-6.0 kHz

CQG 25, 114029 (2008)

dots - 0 lag
solid – bkgd

gray – 1s error

black - background
gray – injections
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Reconstruction of signal waveforms  

� If GW signal is detected, 
two polarizations and 
detector responses can be 
reconstructed and 
confronted with source 
models for extraction of the 
source parameters

� network analysis experts: 
G.Vedovato & M.Drago

red
reconstructed

response

black
band-limited 

time series

sg1304HzQ9 injection

L1: hrss=2.5e-21

G1:hrss=1.7e-21

H1:hrss=1.3e-21

H2:hrss=1.3e-21
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Likelihood Sky Map shows how 
consistent are reconstructed 
waveforms and   time delays as 
function of θ,φ. Max likelihood 
point to source location.

� Source location is characterized 
by a spot in the sky (Error 
Region) rather than by a ( θ,φ)θ,φ)θ,φ)θ,φ)
direction
� x% error region - a sky area which 

covers with x% probability)

� Error Regions should be 
reported for optical/radio 
followup
� may consist of disjoint sky areas

Coordinate Reconstruction

Error Region
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Coherent WaveBurst

� baseline algorithm used by LIGO for S2, S3, S4 and S5 all-sky 
burst searches  
� uses wavelets 
�constructs coherent statistics for confident detection
� rejects instrumental and environmental artifacts
� reconstructs of waveforms and source coordinates 
� performs search over ~165000 sky locations
� performs analysis for ~1000 time shifts for background 
estimation

� application of constraints allows test of source models and 
extraction of source  parameters.

� Developed at UF, upgraded and improved by UF, Padova, Trento 
& AEI
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Gravitational Wave Astronomy
How do we get there? 

Andromeda
(700 kpc)
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New Window on UniverseNew Window on Universe

GRAVITATIONAL WAVES 
PROVIDE A NEW AND UNIQUE 
VIEW OF THE DYNAMICS OF 

THE UNIVERSE.

coincident observations

� externally triggered
�gamma ray bursts
�neutrinos

• GW triggered 
�EM transients
�reconstruction of source 
coordinates 
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Multimessenger Astronomy

� observation and measurement of the 
same astrophysical event
� better confidence of GW event
� extract physics of source engine

� Externally triggered strategy 
� fold in measured time of arrival 

and source location into GW 
searches 

� Look-Up strategy
� search for EM counterpart with 

optical and radio telescopes
� need development of prompt 

pointing capabilities for GW 
detectors 
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GW triggered searches 

•Need accurate coordinate reconstruction
�dependence on antenna patterns & detector noise
�dependence on GW waveforms and polarization state
�reconstruction bias due to algorithmic assumptions
�effect of calibration errors
�high computational cost

•….there are many ways to get it wrong
�need “smart” algorithms
�eventually need more detectors

LIGO, VIRGO (operational)
GEO600 (limited sensitivity, HF?)
LCGT, AIGO (future detectors)
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The Future: Enhanced and 
Advanced LIGO

Enhanced LIGO (S6)
� readout noise; laser 

power
� ×2 better sensitivity
� commission AdLIGO

DC readout with real 
IFOs

� reduce AdLIGO
startup time

2006 2007 2008 2009 20112010 2012 2013 2014

S5 Run S6

enhanced  LIGO

Advanced LIGO

S7?

LIGO

build hardware installation scienceAdvanced LIGO 
funded as of 2008
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Astronomical Reach

x10 better amplitude sensitivity

⇒⇒⇒⇒ x1000 rate=(reach)3

BH-BH
20-2000 y-1

NS-NS
20-200 y-1

SN
0.1=0.5 y-1



<number>

END


