

SUMMER NEWS ON SENSITIVITY STUDY CYGNO

G. Dho, E. Baracchini

G.Dho, E. Baracchini

• During August two more pieces were added to the frequentist approach sensitivity study

Added in the spectra calculation

Evaluation based on the results of the simulation

• These were applied to different time of exposure and volumes.

EVENTS FROM BACKGROUND

• Other than the usual 10, 100, 1000, 10000 events of background, Giulia exploited the rejection factor from Sven's plot and obtained from simulation the expected value for CHINOTTO and CYGNO

CHINOTTO $1.4x10^4$ evt/y

CYGNO $6.8x10^4 \text{ evt/y}$

14/09/2020

G.Dho, E. Baracchini

QUENCHING FACTOR

• The quenching factor links the original energy of the nucleus E, to the measurable energy E'

 $E' = E \cdot q_f(E)$

• Given the measurements of the quenching factors I parametrised them for each element as a function of the original and measurable energy

QUENCHING FACTOR EFFECT OF THE SPECTRA

• The quenching factor would require to change the differencial cross section

• However, being at the moment interested only in the angular spectrum, the energy is integrated on, which makes it easier

 $\frac{dR}{d\cos \gamma} = \int_{E_{thr}}^{\frac{1}{2}m_{\chi}r(v_{E}\cos \gamma + v_{esc})^{2}} \left(e^{-\frac{(v_{min} - v_{E}\cos \gamma)^{2}}{v_{0}^{2}}} - e^{-\frac{v_{esc}^{2}}{v_{0}^{2}}}\right) dE_{R}$ This is no more 1 keV, but the original energy of recoil of the element if 1 keV is the threshold of what we can measure The element of the element if 1 keV is the threshold of what we can measure the element element if 1 keV is the threshold of what we can measure the element element if 1 keV is the threshold of what we can measure the element element element if 1 keV is the threshold of what we can measure the element if 1 keV is the threshold of what we can measure the element if 1 keV is the threshold of what we can measure the element if 1 keV is the threshold of what we can measure the element if 1 keV is the threshold of what we can measure the element if 1 keV is the threshold of what we can measure the element if 1 keV is the threshold of what we can measure the element if 1 keV is the threshold of what we can measure the element if 1 keV is the threshold of what we can measure the element if 1 keV is the threshold of what we can measure the element if 1 keV is the threshold of what we can measure the element if 1 keV is the threshold of what we can measure the element if 1 keV is the threshold of what we can measure the element if 1 keV is the threshold of what we can measure the element if 1 keV is the threshold of what we can measure the element is the element if 1 keV is the threshold of what we can measure the element is the ele

G.Dho, E. Baracchini

QUENCHING FACTOR EFFECT OF THE SPECTRA

• This change has an effect also on the relative probability of each element of being detected

1 keV Threshold QF

G.Dho, E. Baracchini

QUENCHING FACTOR EFFECT ON THE SENSITIVITY PLOT

• The same statistical procedure for the sensitivity studies was performed

1 m³ 1 year exposure

G.Dho, E. Baracchini

QUENCHING FACTOR EFFECT ON THE SENSITIVITY PLOT

• The same statistical procedure for the sensitivity studies was performed

Cross section (cm²) 1 keV 10 bkg Sensitivity 3 σ 10^{-36} 10⁻³⁷ 1 keV 10 bkg Sensitivity QF 3 σ 10⁻³⁸ New energy 10⁻³⁹ threshold on the helium reflects 10^{-40} on the minimum mass visible 10^{-41} 10⁻⁴² 10^{-43} 10^{-44} 10² DM mass (GeV/ c^2) 10^{-1} 10

1 m³ 1 year exposure

G.Dho, E. Baracchini

QUENCHING FACTOR EFFECT ON THE SENSITIVITY PLOT

• The same statistical procedure for the sensitivity studies was performed

Cross section (cm²) 1 keV 10 bkg Sensitivity 3 σ 10⁻³⁶ 10⁻³⁷ 1 keV 10 bkg Sensitivity QF 3 σ 10⁻³⁸ The shape of the New energy 10⁻³⁹ curve changes threshold on the because the q_r of helium reflects 10^{-40} the elements are on the minimum different mass visible 10⁻⁴¹ 10⁻⁴² 10^{-43} 10⁻⁴⁴ 10² DM mass (GeV/ c^2) 10^{-1} 10

1 m³ 1 year exposure

G.Dho, E. Baracchini

SENSITIVITY OF CYGNO

• Including the quenching factor and different values of background events

7

1 m³ 1 year exposure

G.Dho, E. Baracchini

SENSITIVITY OF CYGNO AND CHINOTTO

• Using the different volumes and the expected background

1 year exposure

G.Dho, E. Baracchini

SENSITIVITY OF CYGNO AND CHINOTTO

• Different exposures were also tried scaling linearly the background events both for the volume and the time. Also the CL 90% is quoted but it highly approximated by simply dividing by a factor 2, just to have an idea (will be correct once the bayesian approach will beconsistently used)

G.Dho, E. Baracchini

• With a threshold of 1 keV on the detectable energy this corresponds

