

TimeSPOT WP4: Stato delle attività a Milano

Marco Petruzzo

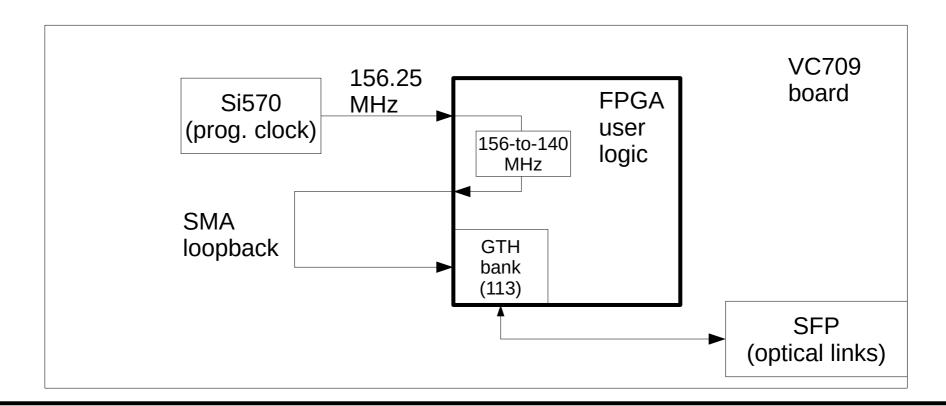
14 Settembre 2020

Current status

- Switch + Engines implementation completed
- Stub Constructor implementation ongoing:
 - Main components are already implemented and tested in hardware
- **Generation** of input data from simulation completed (based on an older software implementation)
 - Finalization of the algorithm porting to Python3 implementation ongoing
- Communication between VC709 and gFEX board via optical links to be checked/fixed

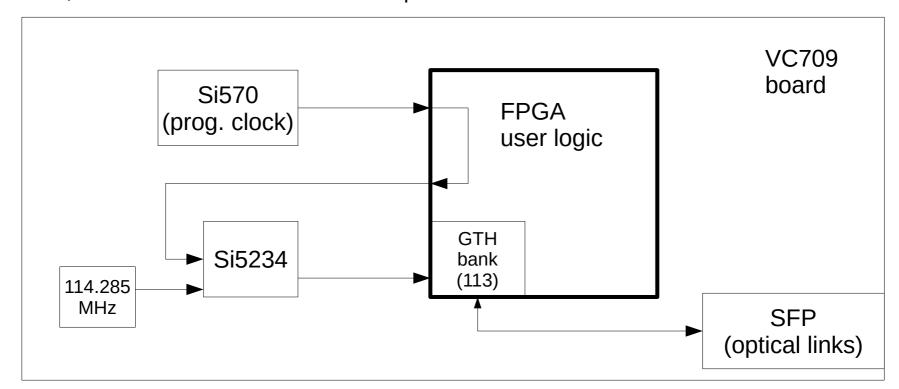
VC709 activity

- VC709 firmware tasks:
 - Communication with PC via PCIe (Wupper) : done
 - Communication with gFEX : ongoing
 - Implementation of Stub Constructor: ongoing


- Activity resumed starting from M.Luchi's work (former master student)
 - Main focus of the activity was based on the communication tasks
 - Main information has been recollected and merged in a unique firmware including:
 - GTH, MIG (RAM), PCIe (Wupper)
 - slow control (I2C)
 - Stub Maker and xy-to-rphi converter tests

VC709 to gFEX communication

- VC709 optical links working in loopback (VC709 TX to VC709 RX) configuration.
- In the past an attempt of communication to/from the gFEX was made with no results.
- The main cause of the failure could be the different clock sources of the two boards
 - In practice the two boards TX and RX could not synchronize
- The old clocking scheme of the VC709 is reported below:



VC709 to gFEX communication

- The VC709 has one programmable clock generator (Si570) and one Si5324 jitter cleaner (with integrated crystal oscillator)
- Two approaches are under investigation at the moment
 - 1) clock generation on Si570 + Jitter cleaning on Si5324
 - 2) clock generation directly on Si5324 (using the 114.285 MHz crystal oscillator)
- At the moment I am working on verifying the correctness of the generated clocks in the two schemes, and communication tests will be performed after

Near future plans

- Optical links communication tests between VC709 and gFEX
 - The communication via optical links is really necessary since the gFEX has no high speed communication to/from PC
- Implementation of the full Stub Constructor on the VC709 board
 - The major components have already been tested (i.e. Stub Maker, xy-to-rphi coordinate conversion modules, Switch for hits delivery)
- Reproduce Switch+Engines results on gFEX
 - Using data generated from improved simulation and with higher statistics
 - Using data from PC (via VC709); in the past a set of input data was stored in a BRAM
- Connect Stub Constructor (VC709) to Switch and Engines (VC709) for a complete test