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The higher luminosity that characterizes the data taking of the
experiment in the ongoing run gives rise to the necessity of
introducing a pre-selection of the data called skimming. Its aim is
to discard background events enabling us to save just a small
fraction of the increased amount of data.
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The higher luminosity that characterizes the data taking of the
experiment in the ongoing run gives rise to the necessity of
introducing a pre-selection of the data called skimming. Its aim is
to discard background events enabling us to save just a small
fraction of the increased amount of data.

What we expect is that the efficiency of the skimming defined as

# signal events passing the skimming
# signal events

~ 100%, (1)

but this fact hasn't been checked yet on the channel
By — 0’ (n(~yy)7m)Ks.
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The higher luminosity that characterizes the data taking of the
experiment in the ongoing run gives rise to the necessity of
introducing a pre-selection of the data called skimming. Its aim is
to discard background events enabling us to save just a small
fraction of the increased amount of data.

What we expect is that the efficiency of the skimming defined as

# signal events passing the skimming

~ 1009 1
# signal events %, (1)

but this fact hasn't been checked yet on the channel
By — 0’ (n(~yy)7m)Ks.

The efficiency for the channel By — ¢(KK)Ks has been recently
checked and is ~ 50%.
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To be more precise: there could be some signal events which are
rejected by the skimming, but we expect them to be included in
those rejected by the following selection which is subsequently
applied:
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To be more precise: there could be some signal events which are
rejected by the skimming, but we expect them to be included in
those rejected by the following selection which is subsequently
applied:

m E, > 150 MeV

m 0.92 < M, <1GeV/c?

m 0.5 < M, <0.57GeV/c?

m 0.49 < My, < 0.51GeV/c?
m cosfl,, > 0.99
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To be more precise: there could be some signal events which are
rejected by the skimming, but we expect them to be included in
those rejected by the following selection which is subsequently
applied:

m E, > 150 MeV

m 0.92 < M, <1GeV/c?

m 0.5 < M, <0.57GeV/c?

m 0.49 < My, < 0.51GeV/c?
m cosfl,, > 0.99

If so, then the skimming procedure works well since it has a mild
effect on the signal, while still reducing the background.
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The most relevant part of my analysis involved the comparison
between a Monte Carlo generated file of 200 000 signal events
subject to the skimming procedure and one not subject to it.
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The most relevant part of my analysis involved the comparison
between a Monte Carlo generated file of 200 000 signal events
subject to the skimming procedure and one not subject to it.

My aim was to check whether there were significant variations in
the distribution of the variables in the data frame.




KS test

The most relevant part of my analysis involved the comparison
between a Monte Carlo generated file of 200 000 signal events
subject to the skimming procedure and one not subject to it.

My aim was to check whether there were significant variations in
the distribution of the variables in the data frame.

The variables at disposal are = 300 so a KS test was employed to
select variables for which the shape of the distribution changed due
to skimming.
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Between the variables highlighted by the KS statistics, many are
correlated ones used to distinguish signal and background.
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Background related variables b

Between the variables highlighted by the KS statistics, many are
correlated ones used to distinguish signal and background.
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A first relevant observation coming from this qualitative
comparison is the fact that errors on masses are suppressed after

skimming.
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A first relevant observation coming from this qualitative
comparison is the fact that errors on masses are suppressed after

skimming.
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As a first estimate of the selection efficiency defined in Eq.1, one
can compute the ratio between the number of events in the data
frame before and after the skim, which gives:

49402
- 79267

€1 =62.3'32 %. (2)




Global efficiency

As a first estimate of the selection efficiency defined in Eq.1, one
can compute the ratio between the number of events in the data
frame before and after the skim, which gives:

49402

L= 79267

=62.3'32 %. (2)

Applying also the selections defined before, one obtains a ratio

38071

2~ 62555

=62.3707 %. (3)
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As a first estimate of the selection efficiency defined in Eq.1, one
can compute the ratio between the number of events in the data
frame before and after the skim, which gives:

49402

€1

Applying also the selections defined before, one obtains a ratio

38071

€2

— Eq.3 reveals that the selection contained in the skimming
affects the data frame in a stronger way than expected.
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Background reduction

These same ratios were computed using 2 files (one skimmed, one
not) containing cC background events. The results are:

9705
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These same ratios were computed using 2 files (one skimmed, one
not) containing cC background events. The results are:

okg 9705

= o 12%, 4

U= Taeas " 12 @
bg _ 438 149 5
2 = g5gg 1T )

— The skimming procedure is indeed able to cut a significant
amount of background events.
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Efficiency histogram

Then, | considered the variables E., l\/ln/, M,, Mk, and cosfl, ,, of
the skimmed and unskimmed data frames, after having applied the
selections defined in the 2" slide.




Efficiency histogram

Then, | considered the variables E., l\/ln/, M,, Mk, and cosfl, ,, of
the skimmed and unskimmed data frames, after having applied the
selections defined in the 2" slide.

The regions between the quantile 0.05 and 0.95 of the unskimmed
distributions were divided in 45 bins and the ratio

# events in the it" bin in the skimmed distribution

ri = (6)

"~ 4 events in the ith bin in the unskimmed distribution

was computed for all the bins.
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Then, | considered the variables E., l\/ln/, M,, Mk, and cosfl, ,, of
the skimmed and unskimmed data frames, after having applied the
selections defined in the 2" slide.

The regions between the quantile 0.05 and 0.95 of the unskimmed
distributions were divided in 45 bins and the ratio

# events in the it" bin in the skimmed distribution

ri = (6)

"~ 4 events in the ith bin in the unskimmed distribution

was computed for all the bins.

We expected r; =~ constant ~ 1.
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Efficiency histogram
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Next step

As it is evident the current skimming procedure determines a (too)
strong rejection of signal events with respect to the current
analysis procedures.
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As it is evident the current skimming procedure determines a (too)
strong rejection of signal events with respect to the current
analysis procedures.

— The next step of my work (already started) will be to deeply
understand how the skimming procedure works and analyse which
is the condition that determines the loss of nearly 40% of the
signal.
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