First look at the track parameters with BIB

Study of tracking performance

- Sample of 1000 muons, with flat spectrum in: $0.1 < P_T < 10 \text{ GeV}$, $8^\circ < \theta < 172^\circ$, $0^\circ < \Phi < 360^\circ$
- Muons + beam-induced background particles (BIB)
- Splitting of the detector in angular regions
- Presence of BIB:
 24° < θ < 156°

Study of tracking performance

Tracks reduced X²

0.45 0.4 0.35 0.25 0.15 0.15 0.10 0.05 0.72/ndof

Total number of hits

Requirements on tracks: $N_{hits} > 6$ and $X^2/ndof < 5$

Track parameters: D_o and Z_o

Track parameters: Ω and P_{τ}

Track parameters: $tan(\lambda)$ and θ

Conclusions

- For $P_T > 1$ GeV it is possible to reject most of BIB tracks. Further cuts can be tested: P_T , errors, N_{hits} per layer,...
- For P_T <1 GeV dedicated studies have to be done.
- Same studies to be done with hadron gun.

Tracking efficiency and P_T resolution

