First look at the track parameters with BIB #### Study of tracking performance - Sample of 1000 muons, with flat spectrum in: $0.1 < P_T < 10 \text{ GeV}$, $8^\circ < \theta < 172^\circ$, $0^\circ < \Phi < 360^\circ$ - Muons + beam-induced background particles (BIB) - Splitting of the detector in angular regions - Presence of BIB: 24° < θ < 156° #### Study of tracking performance #### Tracks reduced X² # 0.45 0.4 0.35 0.25 0.15 0.15 0.10 0.05 0.72/ndof #### Total number of hits Requirements on tracks: $N_{hits} > 6$ and $X^2/ndof < 5$ # Track parameters: D_o and Z_o ### Track parameters: Ω and P_{τ} #### Track parameters: $tan(\lambda)$ and θ #### Conclusions - For $P_T > 1$ GeV it is possible to reject most of BIB tracks. Further cuts can be tested: P_T , errors, N_{hits} per layer,... - For P_T <1 GeV dedicated studies have to be done. - Same studies to be done with hadron gun. # Tracking efficiency and P_T resolution