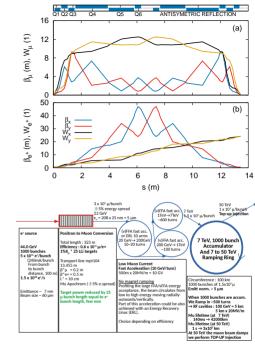
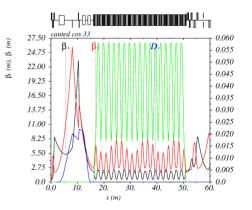
Muon Beam Studies

 Transport line for e⁺ at 44 GeV, μ⁺μ⁻ at 22 GeV Keeps the transverse normalized emittance small ≈ 5 μm (20 nm x 22 GeV/m_μ) Increases the production efficiency by a factor 10. Distributes de power deposition over 20 to 40 targets. https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.23.091601

• Proposal of a scheme to accelerate and accumulate muons.


(For discussion) Proffiting from damping at 50 TeV, I propose a scheme to increase the **muon population from 10⁵ ~ 10⁶ to 10⁸ ~ 10⁹, and 5 μm normalized emittance**


https://arxiv.org/abs/2009.02536

Design of an accumulator for LEMMA based on FFA cells

 (Under study, there is a draft for submission to the arxiv)
 However, a design was presented in a LEMMA general meeting

 https://agenda.infn.it/event/22058/contributions/111642/attachments/71020/90572/muacc_2020apr09.pdf
 A 230 m ring with +/-5% energy acceptance and ß* = 20 cm at the target.
 It accumulates a bit more than 10⁶ μ, and normalized emittance circa 10 μm.
 Limited by the target requirements of low beta: energy acceptance is reduced, dynamic aperture is reduced and multiple scattering with the target increases the beam emittance

