Testing the CPT symmetry in ortho-positronium annihilations with J-PET

Workshop: Investigating the Universe with exotic atomic and nuclear matter

Frascati, 29.09.2020

Aleksander Gajos on behalf of the J-PET Collaboration Jagiellonian University

Smart Growth

Motivation: discrete symetry tests with o-Ps $\rightarrow 3 \gamma$ decays

Discrete symmetries are scarcely tested in the leptonic sector!

- Positronium - the only system consisting of charged leptons used for tests of CP and CPT to date

- The prominent alternative in the leptonic sector to date is neutrinos
- CP-violation results (Dirac phase, $\delta_{\text {CP }}$) approaching 5σ level (NovA, T2K II, JUNO)
- Can we test discrete symmetries in leptonic systems with smaller-scale experiments?

Figure from: arXiv:2009.08585]

Testing discrete symmetries with angular correlations in o- $\mathrm{Ps} \rightarrow 3 \gamma$ decays

$$
e^{+} e^{-} \rightarrow \mathrm{o}-\mathrm{Ps} \rightarrow 3 \gamma
$$

The method:

$\left|\vec{k}_{1}\right|>\left|\vec{k}_{2}\right|>\left|\vec{k}_{3}\right|$
$\langle\hat{O}\rangle \stackrel{?}{=} 0$
for an odd operator

Using ortho-positronium spin
Requires either:

- polarization
- spin control
- spin estimation

Using photon polarization (covered in a talk of J. Raj)

operator	C	P	T	CP	CPT
$\vec{S} \cdot \overrightarrow{k_{1}}$	+	-	+	-	-
$\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right)$	+	+	-	+	-
$\left(\vec{S} \cdot \overrightarrow{k_{1}}\right)\left(\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right)\right)$	+	-	-	-	+
$\overrightarrow{k_{2}} \cdot \vec{\epsilon}_{1}$	+	-	-	-	+
$\vec{S} \cdot \vec{\epsilon}_{1}$	+	+	-	+	-
$\vec{S} \cdot\left(\vec{k}_{2} \times \vec{\epsilon}_{1}\right)$	+	-	+	-	-

[W. Bernreuther et al., Z. Phys. C41 (1988) 143]
[P. Moskal et al., Acta Phys. Polon. B47 (2016) 509]

o-Ps $\rightarrow 3 \gamma$ operators involving spin

Presently studied with J-PET:
$\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right) \quad$ †\& CPT-violation sensitive
$\vec{S} \cdot \overrightarrow{k_{1}} \quad$ CP-violation sensitive

$\left(\vec{S} \cdot \overrightarrow{k_{1}}\right)\left(\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right)\right)$

$\mathrm{T} \& \mathrm{CP}$-violation sensitive but requires o-Ps tensor polarization
\rightarrow not available with the current
J-PET approach

Event-by-event spin estimation

Using an extensive-size o-Ps production and annihilation medium

Effective polarization depends on o-Ps $\rightarrow 3 \gamma$ vertex resolution

Reconstruction of o-Ps $\rightarrow 3 \gamma$ decays in J-PET

1. Find the decay plane containing the 3 hits in the J-PET barrel

2. Transform the hit coordinates to a

2D coordinate system in the decay plane

$$
\left(X_{i}, Y_{i}, Z_{i}, T_{i}\right) \rightarrow\left(X_{i}^{\prime}, Y_{i}^{\prime}, 0, T_{i}\right)
$$

3. For each of the recorded γ hits, define a circle of possible origin points of the incident γ assuming o-Ps decay at time t
4. The decay point (x^{\prime}, y^{\prime}) in the decay plane and time t is an intersection of 3 such circles:

$$
\left(T_{i}-t\right)^{2} c^{2}=\left(X_{i}^{\prime}-x^{\prime}\right)^{2}+\left(Y_{i}^{\prime}-y^{\prime}\right)^{2}, \quad i=1,2,3
$$

[A. Gajos et al., NIM A 819 (2016), 54-59]

J-PET vs previous measurements

Limiting positron emission direction $1 \mathrm{Mbq} \beta^{+}$emitter activity
4π detector but low angular resolution

Recording multiple
geometrical configurations
e+ spin estimated
event-by-event
$P_{e+} \approx \frac{v}{c} \cdot 0.98$
[NIM A 819 (2016), 54]

Yamazaki et al.

PRL 104 (2010) 083401

$$
\begin{aligned}
& \left(\vec{S} \cdot \overrightarrow{k_{1}}\right)\left(\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right)\right) \\
& \mathrm{C}_{\mathrm{CP}}=(1.3 \pm 2.1 \pm 0.6) \times 10^{-3}
\end{aligned}
$$

Polarized o-Ps using external B field Inclusive measurement Only certain angular configurations

Plastic scintillators $=$ fast timing \rightarrow using high β^{+}emitter activity (tested up to 10 Mbq)

Recording all 3 annihilation photons

o-Ps production in J-PET with an extensive size annihilation chamber

- Extensive-size chamber, $\mathrm{R}=12 \mathrm{~cm}$

Tomographic images of the chamber obtained using $\gamma \gamma$ annihilations:

- Walls coated with XAD-4 porous material enhancing o-Ps formation
- $\quad \beta+$ emitter (22 Na) placed in the center of the chamber
- 2 different ${ }^{22} \mathrm{Na}$ activities used:
- $10 \mathrm{MBq}-3$ months meas..
- $0.8 \mathrm{Mbq}-14$ days meas.

Identification of prompt and annihilation γ

Using total Time Over Threshold (TOT) of PMT signals from a scintillator strip

o-Ps $\rightarrow 3 \mathrm{Y}$ annihilation ($\mathrm{E}<511 \mathrm{keV}$)
${ }^{22} \mathrm{Ne}^{*}$ de-excitation ($\mathrm{E}=1274 \mathrm{keV}$)

PMT B	PMT A
TOT(B)	Y

Rejection of subsequent scatterings in the detector

- See talks by J. Raj and N. Krawczyk for the cases when we do not want to reject these scatterings
- For each pair of annihilation photon candidates i and j ($i, j=1,2,3$) the following figure is computed:

$$
\delta t_{i j}=\left|d_{i j}-c \Delta t_{i j}\right|=\left|\left|\vec{r}_{i}-\vec{r}_{j}\right|-c\left(t_{i}-t_{j}\right)\right|
$$

Distribution of the minimum $\delta t_{i j}$ over all photon pair choices in a events:

o-Ps $\rightarrow 3 \gamma$ in J-PET

Selecting events with:

- 3 annihilation photon candidates within 2.5 ns
- A single prompt photon candidate within 250 ns from the 3 ahhinilation photons

3γ image of the o-Ps production chamber

Image of the chamber in the tranverse view of the detector

The first "image" of an extensive-size object obtained with o-Ps $\rightarrow 3 \gamma$ annihilations

CPT-violation sensitive operator

Summary and perspectives

- The J-PET detector is capable of exclusive registration of o-Ps $\rightarrow 3 \gamma$ annihilations
- Full event recontruction including determination of the annihilaiton point in an extensive-size medium
$=>$ first image from o-Ps $\rightarrow 3 \gamma$ events
- Estimation of o-Ps spin can be done on an event-by-event basis
- With the first measurements, J-PET reached a sensitivity of the CPT test at the level of 10^{-4}
- improvement over the best published result to date $\left(3 \times 10^{-3}\right)$
- results to be published soon
- Further improvements are already under way - stay tuned for the next talk!

Thank you for your attention!

This work is supported in the framework of the TEAM/2017-4/39 programme of the Foundation for Polish Science

Republic of Poland

European Union
 European Regional
 Development Fund

