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PHYSICS OF COMPACT OBJECTS IN GENERAL RELATIVITY AND BEYOND
LECTURES 6-7

WHAT DOES GR TELLS US ABOUT NSS

NSs are extremely compact stars formed in the aftermath of supernova explosions. The
violent shock produced by the explosion leaves a core with an average density of the order
of ρ̄ ∼ 1014 − 1015g/cm3, which is of the order of the nuclear density. So, in these stars
neutrons are packed together as in a nucleus, and most protons and electrons have been
transformed to neutrons through the inverse β-decay

e− + p→ n+ νe .

NSs have masses between ∼ 1.2M� and ∼ 2M�, and radii of the order of 10− 15 km.

The structure of a NS

Here is a schematic structure of a NS.
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neutrons start leaking out from the nuclei, and the inner crust starts, where there are
two mixed phases: neutron rich matter and a neutron gas. At larger densities, the nuclei
merge forming an uniform fluid, and from the nuclear density

ρ0 = 2.6× 1014 g/cm3

the outer core starts. The outer core is formed by a fluid of nuclear matter, consisting in
neutrons, protons and electrons. When the density is large enough, the chemical potential
of the electrons becomes larger than the rest mass of the muon, mµ = 105MeV , and then

it is energetically favoured to form muons. Finally, at densities ρ ∼ 1015 g/cm3, the inner
core starts, where it is energetically favoured to form other, heavier particles.

There is a quite general consensus on the behaviour of matter in the outer and inner
crust, and in the outer part of the core, because at these densities the properties of matter
are constrained by experimental data on neutron-rich nuclei. In particular, the equation
of state (EoS) of matter, i.e. the energy density as a function of the pressure ε(p), is well
understood. Conversely, our understanding of the inner core is much more limited: we do
not really know the EoS there; nuclear physicists have computed different possible EoSs,
which differ in the particle content and in the approach to describe the interactions.

There are two reason for this. The first is that the densities in the inner core can not
be reproduced in the laboratory: we do not have experimental constraints. The second
is that, since hadronic matter at these densities is described by the non-perturbative
regime of quantum chromo-dynamics, our theoretical understanding of its behaviour is
also limited. As I said, we do not even know the particle content: there may be hyperons, a
Bose condensate of mesons, or even deconfined quark matter. Astrophysical observations
and, even more, GW observations, are our best hope to constrain these models, and
eventually understand the behaviour of matter in the inner core of NSs.

A. Thermodynamics of perfect fluids in GR

I will briefly recall the basic concepts of thermodynamics in GR, for a perfect fluid,
i.e. a non-viscous fluid without heat flux, with fixed chemical composition and in ther-
modynamic equilibrium.

We can define a four-velocity field uµ(x), i.e. the four-velocity of an infinitesimal fluid
element at the spacetime event (x0, x1, x2, x3) (which I denote collectively as x). We can
define, at each x, a set of quantities describing the thermodynamical state of the fluid
element in x:

• the number of baryons per unit of volume, or baryon number density n;

• the energy density ε, which includes the rest-mass energy and the potential energy
of the interactions;

• the pressure p;

• the temperature T ;

• the entropy per baryon s.
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All these quantities are evaluated in the LIF comoving with the fluid element at the event
x.

Since the baryon number is always conserved, the baryon number density satisfies the
conservation law

(nuα);α = 0 (continuity equation) .

The first law of thermodynamics can be cast as

dε =
ε+ p

n
dn+ nTds .

The stress-energy tensor of the fluid can be written as:

T µν = (ε+ p)uµuν + pgµν .

The thermodynamical state of the fluid is determined by two of these variables; then, the
others can be obtained from the EoS, a relation - determined by the microphysics of the
fluid - which gives one of these variables in terms of two others, for instance

ε = ε(p, s) .

However, a NS (unless it is newly born) has a temperature which, although apparently
large (at most T ∼ 109 K), is much smaller than the Fermi temperature of the fluid
(TF ∼ 1011 K); therefore, a NS behaves as a zero-temperature fluid; the thermodynamical
state is determined by one variable only, and the EoS is barotropic, i.e. it is a function
of one variable only:

ε = ε(p) .

B. The TOV equations

Let us consider a static, spherically symmetric star made of a perfect fluid, with
barotropic equation of state ε = ε(p). It can be shown that the general form of the
metric of a spherically symmetric spacetime can be written as:

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdϕ2) ,

where ν(r) and λ(r) are functions to be determined. It is worth noting that there is a
theorem, due to Birkhoff, stating that the unique asymptotically flat solution of Einstein’s
equations in vacuum which is spherically symmetric is the Schwarzschild solution. This
is a very powerful result: the exterior of any spherically symmetric body is described by
Schwarzshild’s metric. The same is not valid for rotating stars, whose exterior is described
by a metric which depends on the EoS of the star, and is anyway different from Kerr’s
metric.

So, for r > R we know that

e2ν(r) = 1− 2M

r
and e2λ(r) =

1

1− 2M
r

.
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In order to find the functions ν(r) and λ(r), we solve Einstein’s equations, with this metric
and with the stress-energy tensor

T µν = (ε+ p)uµuν + pgµν .

We introduce a new function m(r) defined as

m(r) ≡ 1

2
r
(
1− e−2λ(r)

)
→ e−2λ(r) = 1− 2m(r)

r
.

Thus m(r) = M for r > R. Replacing this in Einstein’s equations, with the assumptions
of staticity and spherical symmetry, we obtain the following set of ODEs in r, known as
the Tolman-Oppenheimer-Volkoff (TOV) equations:

dm

dr
= 4πr2 ε

dp

dr
= −(ε+ p)[m(r) + 4πr3 p]

r[r − 2m(r)]
,

with the further equation

ν,r =
m+ 4πr3p

r (r − 2m)
.

The above system is closed if we assign a barotropic EoS of the form p = p(ε) (or ε = ε(p))
The first equation tells us that m(r) is the total mass-energy enclosed in a sphere of

radius r; the second is the GR generalization of the hydrostatic equation. These two
(supplemented with the EoS) can be solved separately for m(r) and p(r), and once they
are solved, it is possible to determine ν(r).

The appropriate boundary conditions of these equations are the matching with Schwarzschild
solution at r = R, m(0) = 0, and p(0) = pc central pressure. They can easily be solved
numerically, finding (given the EoS) a one-parameter family of solutions: one solution
for each choice of the central pressure pc (or, equivalently, for each value of the central
energy density εc = ε(pc)). Note that it is always dp/dr < 0: the pressure decreases
moving outwards; by definition, the radius at which the pressure vanishes is the radius of
the star; in other words, the radius R is defined by p(R) = 0. In this way, by solving the
TOV equations it is possible (for each pc) to find the radius R, and the mass M = m(R).
We can then get, for a given EoS, a mass-radius diagram: each point corresponds to a
different value of pc.

Each EoS leads to a different mass-radius diagram; thus, by measuring the mass and
the radius of a NS, it is possible to discard some EoS, and in general put constraints on
them. Actually, sometimes even the measurement of the mass only can give some limited
information: few years ago, a NS with M = 2M� was observed; previosuly, all observed
NSs were lighter than that; this simple observation was enough to discard some EoSs,
since they predicted a maximum possible value of the mass which was smaller than 2M�!
However, to obtain stronger constraints we need also to measure the radius; this can be
difficult. Current measurements of R rely on the X-ray emission at the surface of the star
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but this depends on very complex and not fully understood physics. In the near future,
new large-area X-ray observers (Athena, eXTP) will give us new data to improve our
models of the physics at the NS surface, and then to perform a reliable measurement of
the NS radius.

To date, the best constraints on the EoS do not come from EM observations, but from
GW observations, as I am going to discuss. These measurements also allow to estimate
the NS radius and then can be an useful check of the modelling of the X-ray emission
from the NS surface.

C. Tidal deformations of compact stars and Love numbers

We shall discuss the tidal deformation of neutron stars, becase, as we will see, they
affect the GW signal from BNS coalescences, and carry information on the EoS.

In order to understand how tidal deformations affect a NS, let us consider a static,
spherically symmetric star with mass M , placed in a static quadrupolar external field.
Let us first consider the problem in Newtonian physics; let Φext by the external potential.
By expanding the potential around the center of mass of the body,

Φext = const+
∂Φext

∂xi
xi +

1

2
Eijx

ixj +O(r3)

where

Eij =
∂2Φext

∂xi∂xj

is the tidal tensor. That constant term is irrelevant and the term Φext,ix
i gives the force

acting on the origin (the center of mass of the body), but since we assume it is a tidal
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field, it vanishes, i.e.:

Φext =
1

2
Eijx

ixj +O(r3) .

Since the external gravitational potential has no sources at the origin, ∇2Φext = 0 and
then Eij is traceless, i.e. it is a STF tensor Eijx

ixj = Eijx
<ixj> = Eijr

2n<inj>. I recall
that the STF functions n<inj> are combinations with the spherical harmonics with l = 2;
in other words, the leading term in this expansion is a quadrupolar term.

The total gravitational potential is

Φ = −M
r
− 3

2

1

r3
Qijn

<inj> +O

(
1

r4

)
+

1

2
Eijr

2n<inj> +O(r3) .

Note that in this expansion there are terms divergent at infinity: it holds in a buffer
region, not too close to the body, but not too far away, where there are the sources of the
tidal field. Of course, Φ is not really divergent at infinity, because beyond the sources of
the tidal field it falls off again, although such behaviour is not captured by this expansion.

The body is spherically symmetric per se, but it is placed in a quadrupolar field, and
thus it acquires a quadrupolar deformation: the quadrupole moment Qij is induced by
the external tidal field Eij. By solving the perturbed Newtonian equation, it follows that
these tensors are indeed proportional:

Qij = −λEij
where λ is called tidal deformability of the body, and depends on its structure (and in
particular on its EoS). It has dimensions [L]5 and, since it grows very roughly as R5, one
defines the dimensionless tidal, quadrupolar Love number of the star:

k2 =
3

2

λ

R5
.

Other similar dimensionless Love numbers characterize the deformation properties of the
star.

This can be extended to GR. This is discussed extensively in several articles, for instance
Hinderer, arXiv:0711.2420, but for more details you should read Binnington and Poisson,
arXiv:0906.1366; Damour and Nagar, arXiv:0906.0096.

It can be shown that the 00 component of the metric of a static, spherically symmetric
star placed in an external tidal field can be expanded, similarly to the Newtonian case, as

g00 = −1 +
2M

r
+

3

r3
Qijn

<inj> +O

(
1

r3

)
− Eijr2n<inj> +O(r3)

where now the tidal tensor is defined in terms of the Riemann tensor:

Eij = uµuνRµiνj .

By solving the perturbed Einstein’s equations one finds that, as in the Newtonian case,

Qij = −λEij
and it is then possible to compute the tidal deformability λ for a given stellar model, i.e.
for a given EoS and for a given mass. Let us see the main steps of this computation.
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Computation of λ

We consider the metric above as a perturbation of the static spherically symmetric
spacetime solution of the TOV equations:

gµν = g(0)µν + hµν

where g
(0)
µν = diag(−e2ν(r), e2λ(r), r2, r2 sin2 θ). We expand the perturbation hµν in tensor

spherical harmonics but, differently from the case of QNMs, here the perturbation is
static. Moreover, it is purely quadrupolar, because the SFT terms n<inj> with ni =
(sin θ sinϕ, sin θ cosϕ, cos θ) are combinations of the shperical harmonics Y2m with m =
−2, . . . , 2. Moreover, it is purely polar, and it can be shown that for static perturbations
the contribution tr, H1(r), identically vanishes; therefore (leaving implicit the superscript
2m on the perturbation functions)

hµν =


−e2ν(r)H0(r) 0 0 0

0 e2λ(r)H2(r) 0 0
0 0 r2K(r) 0
0 0 0 r2 sin2 θK(r)

Y2m(θ, ϕ) .

The stress-energy tensor is perturbed as well: T µν = T (0)µν+δT µν , where uµ = u(0)µ+δuµ,
ε = ε(0) + δε, p = p(0) + δε,

T(0)µν = (ε(0) + p(0))u(0)µ u(0)ν + p(0)g(0)µν

δTµν = (ε(0) + p(0))(u(0)µ δuν + u(0)ν δuµ) + (δε+ δp)u(0)µ u(0)ν + p(0)hµν + δpg(0)µν

and then the background Einstein’s equations give the TOV equations, while the per-
turbed Einstein’s equations

δRµν −
1

2
g(0)µν δR−

1

2
hµνR

(0) = 8πδTµν

give equations for the perturbations {H0(r), H2(r), K(r), δε, δp}. Note that δuµ has only
the time component, being the perturbation static, which is given by the normalization
uµuµ = −1.

The EoS gives δε in terms of δp; by combining the perturbation equations it is possible
to simplify δp. Moreover, some of the Einstein’s equations give H2 and K in terms of H0,
so we end up with a single ODE in the quantity H0(r). By neglecting the superscript (0)
on the background quantities,

H0(r)
′′ +

{
2

r
+ e2λ

[
2m

r2
+ 4πr(p− ε)

]}
H ′0

+

[
−6e2λ

r2
+ 4πe2λ

(
5ε+ 9p+

ε+ p

dp/dε

)
− 4(dν/dr)2

]
H0 = 0 .

In the exterior of the star this equation simplifies, and becomes

H ′′ + 2

(
1

r
− λ′

)
H ′ −

(
6e2λ

r2
+ 4(λ′)2

)
H = 0
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where e−2λ = 1 − 2M/r. The general solution in the exterior can be written in terms of
associated Legendre functions:

H(r) = c1Q
2
2

( r
M
− 1
)

+ c2P
2

2

( r
M
− 1
)

where c1 and c2 are arbitrary constants. In the limit r � M , Q 2
2 goes like 1/r3 and P 2

2

goes like r2:

H =
8

5
c1

(
M

r

)3

+O

((
M

r

)4
)

+ 3c2

( r
M

)2
+O

(( r
M

)3)
.

If we compare this expression with the metric expansion

g00 = −1 +
2M

r
+

3

r3
Qijn

<inj> +O

(
1

r3

)
− Eijr2n<inj> +O(r3)

we see that the term proportional to c1, falling off asymptotically, corresponds to the
quadrupole contribution, while the term proportional to c2, divergent asymptotically,
corresponds to the tidal field contribution. The ratio between the constants c1 and c2,
then, times some numerical coefficient, gives the ratio between the quadrupole Qij =
−λEij and the tidal field Eij, i.e. it gives the tidal deformability λ.

In order to determine the constants c1 and c2, we have to integrate the equations inside
the star, from the center to the surface r = R. By imposing regularity at the center one
gets H(r) ' c0r

2 + O(r4) . . . ; the constant c0 is arbitrary because so is the amplitude
if the perturbation: it depends on the amplitude of the external tidal field, and is an
overall multiplicative constant which cancels from the ratio c1/c2. Then, at r = R we
impose continuity and regularity, matching H(R) and H ′(R) with the exterior analytical
solution. In this way, we find c1, c2 and then the tidal deformability λ.5

ness of a black hole (m/R = 0.5) regardless of the EOS
dependent quantity y [16, 17].

Normal matter EOS behave approximately as poly-
tropes for large compactness. However, for smaller com-
pactness, the softer crust becomes a greater fraction of
the star, so the star is more centrally condensed and k2

smaller. For strange quark matter, the EOS is extremely
sti↵ near the minimum density, and the star behaves ap-
proximately as an n = 0 polytrope for small compact-
ness. As the central density and compactness increase,
the softer part of the EOS has a larger e↵ect, and the
star becomes more centrally condensed.

The parameter that is directly measurable by gravi-
tational wave observations of a binary neutron star in-
spiral is proportional to the tidal deformability �, which
is shown for each candidate EOS in Fig. 2. The values
of � for the candidate EOS show a much wider range of
behaviors than for k2 because � is proportional to k2R

5,
and the candidate EOS produce a wide range of radii
(9.4–15.5 km for a 1.4 M� star for normal EOS and 8.9–
10.9 km for the SQM EOS). See Table I.

TABLE I: Properties of a 1.4 M� neutron star for the 18 EOS
discussed in the text.

EOS R(km) m/R k2 �(1036 g cm2 s2)

SLY 11.74 0.176 0.0763 1.70

AP1 9.36 0.221 0.0512 0.368

AP3 12.09 0.171 0.0858 2.22

FPS 10.85 0.191 0.0663 1.00

MPA1 12.47 0.166 0.0924 2.79

MS1 14.92 0.139 0.110 8.15

MS2 13.71 0.151 0.0883 4.28

PS 15.47 0.134 0.104 9.19

BGN1H1 12.90 0.160 0.0868 3.10

GNH3 14.20 0.146 0.0867 5.01

H1 12.86 0.161 0.0738 2.59

H4 13.76 0.150 0.104 5.13

PCL2 11.76 0.176 0.0577 1.30

ALF1 9.90 0.209 0.0541 0.513

ALF2 13.19 0.157 0.107 4.28

SQM1 8.86 0.233 0.098 0.536

SQM2 10.03 0.206 0.136 1.38

SQM3 10.87 0.190 0.166 2.52

For normal matter, � becomes large for stars near the
minimum mass configuration at roughly 0.1 M� because
they have a large radius. For masses in the expected
mass range for binary inspirals, there are several di↵er-
ences between EOS with only npeµ matter and those
with condensates. EOS with condensates have, on aver-
age, a larger �, primarily because they have, on average,
larger radii. The quark hybrid EOS ALF1 with a small
radius (9.9 km for a 1.4 M� star) and the nuclear matter
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FIG. 2: Tidal deformability � of a single neutron star as a
function of neutron-star mass for a range of realistic EOS. The
top figure shows EOS that only include npeµ matter; the mid-
dle figure shows EOS that also incorporate ⇡/hyperon/quark
matter; the bottom figure shows strange quark matter EOS.
The dashed lines between the various shaded regions repre-
sent the expected uncertainties in measuring � for an equal-
mass binary inspiral at a distance of D = 100 Mpc as it passes
through the gravitational wave frequency range 10 Hz–450 Hz.
Observations with Advanced LIGO will be sensitive to � in
the unshaded region, while the Einstein Telescope will be able
to measure � in the unshaded and light shaded regions. See
text below.

FIG. 1. Credits: arXiv:0911.3535

By drawing the tidal deformability as a function of the mass for different choices of the
EoS, one finds that is is very sensitive of the EoS: knowing the mass and λ, it is possible
to exclude some EoSs, and more generally to constrain it.
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Measure of λ

We have seen that the PN waveform of inspiralling compact binaries has the form, in
the frequency domain, h(x) = Aeφ with x = (MπνGW )2/3 and

φ = φPP =
3x−5/2

128η

[
1 +

20

9

(
743

336
+

11

4
η

)
x− 16πx3/2 + . . .

]
.

This is the point-particle contribution, since the BHs of the binary can be treated, in the
inspiral, as point particles. When the bodies are NSs, in the early part of the inspiral
they can still be treated as point particles, and thus the waveform is exactly the same
as for BHs; but in the late inspiral, the finite-size effects become non-negligible. They
appear as a correction to the waveform:

φ = φPP + φT where φT =
3x−5/2

128η

(
−39

2
Λ̃x5

)
where the tidal deformabilities of the two stars appear in dimensionless form ΛA = λA/M

5

(M = m1 +m2), A = 1, 2, and Λ̃ is a combination of the two tidal deformabilities:

Λ̃ =
16

13

(m1 + 12m2)m
5
1Λ1 + (m2 + 12m2)m

4
2Λ2

M5
.

Therefore, the (combined) tidal deformability of the two stars can be directly measured
from the waveform. And indeed, it has been measured, or at least some bounds have
been set, when the BNS coalescence GW170817 has been measured.

This observation allowed to determine that, assuming that the two stars have the same
EoS, a M = 1.4M� satisfies

Λ < 800 at 90% condfidence level

excluding the largest values of tidal deformability, i.e. excluding the most deformable
EoSs.
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BEYOND GENERAL RELATIVITY

For this part, I suggest to read the book: Will, Theory and Experiment in Gravitational
Physics, or one of the various review articles on the subject, such e.g. Berti et al.,
arXiv:1501.07274.

General relativity has passed all tests in the century after its formulations, so why should
we bother at studying possible deviations? There are several answers to this question.

• We know that GR is not renormalizable, and more generally it can not be reconciled
with quantum field theory. Note that there are regimes in which both quantum effects
and GR effects are relevant: at a scale comparable with the Planck length, 10−33 cm,
or at the corresponding energies ∼ 1019 GeV; we do not have a theory describing
these regimes. So, GR has to be the low-energy limit of some other theory.

• GR has pathologies, like the prediction of sigularity as the generic outcome of grav-
itational collapse, or the information loss problem.

• The current paradigm of cosmology predicts the existence od DM and DE, but we
do not really understand them; what if the cosmological observations are instead due
to modifications of GR? This is a possiblity worth exploring.

• Until 2015, all tests of GR have been tests of the weak-field limit of GR. Now the
new regime of strong-field gravity has been opened to observations, and it is natural
to ask if GR describes correctly the gravitational interaction also in this scale.

• Even if we think that GR is correct, in order to devise significant tests of GR we
have to think to possible modifications.

Two main approaches are possible to model gravity deviations: bottom-up and top-
down. Both have plus and minus sides, so both are worth being pursued.

Bottom-up approach

In the bottom-up approach we choose the phenomenology to be studied, and the
quantities most appropriate to describe this phenomenology; devise a parametrization
of these quantities; typically, each parameter is associated to the violation/modification
of some GR property; we compute observables in terms of the parameters; we perform
observations/experiments, setting bounds to the parameters.

Examples are:

• Parametrizations of the metric generated by an isolated body. The first example was
the PPN metric (which is a development of early suggestions by Eddington just after
the formulation of GR); it has been used to parametrize deviations of the solar system
metric, and have been used for solar system tests. More recently, parametrizations
of the metric of BHs have been proposed, such as the Johansen-Psaltis metric, the
Konoplya-Rezzolla-Zhidenko metric, and others. They can be used, for instance, for
tests on the BH shadow, for tests of the motion of stars near BHs, for tests of the
EM emission from accretion disks.
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• Parametrizations of the motion of compact binaries, such as the PPK expansion,
used to study the motion of binary pulsars.

• Parametrizations of the waveform emitted by a BBH coalescence. There are two
examples, both have been used to perform tests of GR using the GW150914 signal.
In the first, the PN formula

φ =
∞∑
n=0

αnx
n−5/2

has been generalized, by considering possible deviations of the parameters αn, fitting
these with the signal, and obtaining deviations consistent with zero. The second,
more sophisticated, is the PPE expansion, in which the waveform is parametrized
as:

h(x) = AGR(x)(1 + αxa)eiφGR+iβxb .

GR is recoverd for α = β = 0; the waveform depends on the parameters α, β, a, b.
They have been fitted with the signal, finding, again, values consistent with zero.

• Parametrizations of the modifications of QNMs. Several parametrization exists, de-
scribing the shifts in frequencies and damping times, as functions of the GR deviation
parameters and of the BH spin.

• There are also parametrizations of cosmological deviations, the so-called PPF for-
malism.

Top-down approach

In the top-down approach, one considers GR modifications, possibly inspired by fun-
damental physics considerations; work out observational consequences, which typically
depend on parameters describing the amplitude of the modification; and compare with
observations, setting bounds on the parameters.

Some remarks:

• in most cases we are looking to tiny modifications (parameters small due to existing
data)

• often difficult to disentangle a truly from poorly known “standard” physics effects
(BHs better than NSs)

• best (when possible) would be to find new effects (the so-called “smoking-guns”).

There are several ways to modify GR. They can be classidied using the Lovelock theorem,
stating that inD = 4 the only symmetric, rank-two divergenceless tensor diffeomorphisms-
invariant is the Einstein tensor. Dropping one or another of these hypotheses one has
possible modifications:

• consider higher dimensions;
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• allow non-divergenceless tensor, i.e. allow for violations of the weak equivalence
principle (but it has been tested with incredible precision, up to ∼ 10−15);

• drop diffeomorphism invariance, such as in the Lorentz-violating theories, or in mas-
sive gravity;

• include extra fiels (scalar fields, vector fields, etc.)

In practice, most of these theories can be reformulated as theories with extra fields, in
particular theories with a scalar field in the gravitational sector: the so-called “scalar-
tensor theories”. Then, in the next lecture I will focus on these theories.
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