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PHYSICS OF COMPACT OBJECTS IN GENERAL RELATIVITY AND BEYOND
LECTURES 1-2

With compact objects we mean astrophysical objects which have a non-negligible com-
pactness, i.e.

C =
M

R
. 1

(geometrized units G = c = 1).
Near compact objects there is the strong-field regime of gravity, in which the GR effects

are significant, and the non-linearity of Einstein’s equations also becomes relevant.
Since this regime has been mostly impossible to observe until very recently, with the

detection of GWs, GR in this regime is very poorly constrained by observational data;
and thus, we can not exclude that deviations from GR are present in this regime.

To our present knowledge, only two kinds of compact objects exist:

• Neutron stars (possibly, quark stars) [NSs]

• Black holes [BHs]

This statement relies on our understanding of stellar evolution, of nuclear physics, of
fundamental physics. Not only we understand, to some extent, the structure of these
objects: we also know their formation mechanism, and thus we can estimate how many
of them are in the universe, their distribution, their electromagnetic emission (on which
we have plenty of observational data), their GW emission (on which we are starting to
collect data). All this makes a coherent picture - with some holes and question marks, of
course, but still a coherent picture.

Of course this does not exclude that different kinds of compact objects exist: either
those that we observe may be different from what we think, or other compact objects still
unobserved may be out there. The so-called “exotic compact objects”, ECOs, are still a
possibility which deserves to be tested. In these lectures I will discuss BHs and NSs.

Some references: classic books: Misner, Thorne, Wheeler Gravitation, Weinberg Gravi-
tation and Cosmology, Wald General Relativity, Chandrasekhar The Gravitational theory
of BHs, and more recently: Poisson and Will Gravity. For some computations I also
followed: Ferrari, Gualtieri, Pani General Relativity and its Applications.
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Some of the main observables:

For BHs:

• Accretion disks around BHs. EM emission, mainly observed by X-ray telescopes. In
the near future, precision measurements from large area X-ray telescopes as Athena,
eXTP.

• BH shadow. EM emission observed by EHT (an array of radio-telescopes), the so-
called “picture” of a BH.

• Motion of stars orbiting in the gravitational field of a large BH. EM emission, ob-
served by infrared telescopes.

• BBH coalescences ∼ 5−100M�. GW emission, observed by ground-based detectors:
now 2nd generation (LIGO, Virgo, soon Kagra), in the near future 3rd generation
detectors with much larger sensitivity (ET, Cosmic Explorer).

• BBH coalescence 106 − 107M�. GW emission, to be observed in the near future by
space-based detector LISA.

• EMRI (compact star or ∼ 5−100M� around 106−109M� BH). GW emission, to be
observed in the near future by space-based detector LISA, and by PTA (GW affect
motion of pulsars observed with radio-telescopes, see Sesana’s lecture)

• Stochastic background of GWs, possibly observed in the near future by space-based
detector LISA.
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For NSs:

• binary pulsars. EM emission (but indirect effect of GWs), observed by radiotele-
scopes

• Accretion disks around NSs. EM emission, mainly observed by X-ray telescopes. In
the near future, precision measurements from large area X-ray telescopes as Athena,
eXTP.

• BNS coalescences. GW emission, observed by ground generation detectors: now 2nd
generation (LIGO, Virgo), in the near future 3rd generation detectors with much
larger sensitivity.

• Pulsars as continuous GW sources, to be observed in the near future by 3rd generation
detectors.

In the following I will discuss BHs and NSs, first in GR and then beyond GR, in order to
understand what do we know of their structure, what can we learn from them, and which
fetures can help characterizing and understanding their phenomenology.

Of course there are so many features to discuss, there is definitely no time to discuss all
of them, so I will choose some of them which I think are interesting.
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STATIONARY, ISOLATED BODIES IN GR

Let us consider a stationary, isolated body. The support of its stress-energy tensor
- the spacetime region in which it is non-vanishing is the worldvolume of the body, i.e. a
certain worldtube; outside this region, Tµν = 0. Since the body is isolated, the spacetime

R

r>>R

V

r~R

generated by the body as asymptotically flat. There is a precise mathematical definition
of asymptotic flatness, based on the concept of conformal rescalings introduced by Roger
Penrose, but we do not have the time to discuss this here; we only need to know that
when a spacetime is asymptotically flat, it is possible to define a spacelike coordinate r
such that

lim
r→∞

gµν = ηµν

and then the metric can be expanded in powers of 1/r. If R is the lengthscale of the
object, there is a near region in which r is comparable to R, which - if the body is a
compact object (C . 1) - is a strong-field region. And there is the far-field region
r � R, which is always a weak-field region, and thus where

gµν = ηµν +O

(
1

r

)
= ηµν + hµν with |hµν | � 1 , |h′µν | � 1/R .



5

A. Far-field metric of a stationary, isolated body

The far-field metric is a mine of precious information on the compact object. The
leading-order terms of the 1/r expansion can tell us the mass M and angular momen-
tum J of the central body: the metric of a stationary, isolated object in the far-field
region can always be written as:

ds2 = −
(

1− 2M

r

)
dt2 +

(
1 +

2M

r

)
dr2 + r2(dθ2 + sin2 θdϕ2)

− 4J

r
sin2 θdtdϕ+ higher-order terms in 1/r . (1)

Let us first consider the case in which the field is weak, i.e.

gµν = ηµν + hµν with |hµν | � 1 , |h′µν | � 1/R

not only far away from the body, but also throughout the body itself. Solving Einstein’s
equations linearized on flat space for a stationary spacetime

O

x'

x

x-x'

h  (x)μν

V ∂V

�F h̄µν = −∇2h̄µν = −16πTµν

h̄µν,µ = h̄iν,i = 0 ,

where

h̄µν ≡ hµν −
1

2
ηµνh

α
α

can be solved as:

h̄µν(~x) = 4

∫
V

Tµν(~x′)

|~x− ~x′|
d3x′

By Taylor expanding 1/|~x−~x′| around |~x′| = 0 we find the so-called multipolar expansion:

1

|~x− ~x′|
=

1

r
+
xix′i

r3
+O

(
1

r3

)
,
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where r = |~x|. By replacing this expansion,

h̄µν(~x) =
4

r

∫
V

Tµνd
3x′ +

4xi

r3

∫
V

Tµνx
′id3x′ +O

(
1

r3

)
.

Thus, it is possible to express h̄µν in terms of integral over the source at fixed time, in
particular ∫

V

T00d
3x′ = M

and

J i = εijk

∫
V

x′jT 0kd3x′ .

Note that in the weak field regime we can apply the laws of SR, and since in this case
there are no velocities, we can apply Newtonian physics, where T00 = ρ mass density,
and T 0k = Pk momentum density. Then, these quantities are the well-known mass
and angular momentum of the source; for the latter, note that if ~x = (x1, x2, x3) and
~P = (P1,P2,P3), then εijkx

jT 0k are the components of

~x′ × ~P

density of the angular momentum.
A straightforward computation shows then that the far-field limit metric is given by:

h00 =
2M

r
+O

(
1

r3

)
h0i =

2

r3
εijkx

jJk +O

(
1

r3

)
hij =

2M

r
δij +O

(
1

r3

)
. (2)

Then, by carefully choosing the coordinate system, one finds the line element (1): at
leading order in the 1/r expansion, the metric only depends on M and on J .

If we drop the simplifying assumption of weak field on the source, we can not rely on
the Newtonian definitions of mass and angular momentum. We can just solve the field
equations in vacuum,

∇2h̄µν = 0

h̄iν,i = 0 ,

in the far field limit only. This is a differential equation, and the general solution will
depend on some integration constant. Choosing appropriately the coordinate system, the
general solution is again (2), but now M and J are just integration constants.
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Still, it is possible to give a physical interpretation of these constants. You know that it
is impossible to define, in a general spacetime, a conserved energy density and a conserved
momentum density, because the stress-energy tensor does not take into account the energy
density associated to the gravitational field. However, it is possible to define a quantity,
the stress-energy pseudo-tensor

(−g)(tµν + T µν) =
1

16π

∂2

∂xα∂xβ
(gµνgαβ − gµαgνβ)

which does take into account the energy density associated to the gravitational field, and
is conserved. This definition cannot be applied locally, in a small neighboroud, but it
can be applied if integrated in a large enough region of spacetime. We can define the
total four-momentum of the spacetime as an integral in the entire three-volume Vtot at
t = const, extending up to the far field region.

P µ =

∫
Vtot

d3x(−g)(T 0µ + t0µ)

This quantity which is constant in time.
Remarkably, this quantity is a total divergence, and thus it can be written - by Gauss’

theorem - as an integral on the surface of Vtot. To compute this integral, then, we only
need to know the metric in the far-field limit. If we replace the metric (2), we find that

P 0 = M

and similarly by defining the angular momentum

εijk

∫
Vtot

d3x(−g)xj(T 0k + t0k) = J :

the integration constants of the solution (1) can be interpreted as the mass and the angular
momentum not only of the body, but also of the gravitational field.

The fact that the features of the body show up in the far field metric is important
because it has phenomenological consequences: we can measure the mass and the angular
momentum of the body, by looking at the motion of a test body in the far-field region of
the central body. In practice:

• We can measure the mass by looking at the orbits of a test body along geodesics;
indeed, in the weak-field limit the geodesics equation reduces to Newtonian gravity
and then to Kepler’s laws; by fitting the orbits of a test body we can measure the
mass of the central object. This has been done, for instance, with the observation of
the motion of stars around SGR A∗, measuring the mass of the supermassive BH at
the center of our galaxy to be M = 4.1× 106M�.
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• We can measure the angular momentum by measuring the precession of gyroscopes
orbiting around the central body. Note that in general different effects are present.
If the gyroscope moves along a geodesic, its intrinsic spin vector Sµ satisfies

uαSµ;α = 0

Sµu
µ = 0

i.e. it does not have time component in a comoving frame, and it parallely trans-
ported. This determines a precession of the space components of the spin, ~S = (Si):
by neclecting the effects of the orbital motion

dSi

dτ
= u0Si,0 = −u0Γi0jSj = −1

2
(h0i,j − h0j,i)Sj = εijkω

jSk

where

ωk =
1

2
εkijh0i,j .

By replacing the far-field metric we find

ω = ωLT ≡
1

r3

(
− ~J + 3

~J · ~x
r2

~x

)
.

This is the so-called Lense-Thirring precession. Moreover, there is another - generally
larger - precession, the geodetic precession, due to the coupling between the orbital
angular momentum and the spin of the gyroscope..

This effect has been observed in the gravitational field of the Earth, in different ways:
by a dedicated space experiment, Gravity Probe B, in which a gyroscope was sent
on a satellite orbiting around the Earth, and also by studying the relative motion of
different satellites. We didn’t observe yet the Lense-Thirring precession in compact
stars, but we expect to see it soon by analyzing the motion of binary pulsars.
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B. Multipole moments

The far-field metric of a stationary, isolated object contains much more information
than that. Indeed, the higher-order terms in the multipole expansion depend on a set
of constants, the multipole moments, which characterize the structure of the body.
Multipole expansions are a powerful tool to extract physical content from a (gravitational
or electrostatic) potential, or from a spacetime metric, as long as they can be treated, at
least approximately, as stationary. Possible references for this part: Poisson, Will Gravity;
Cardoso, and Gualtieri, review article, arXiv:1607.03133

Multipole expansion were first introduced in Newtonian mechanics to describe the grav-
itational (or elecrostatic) potential generated by a distribution of masses (of charges) in
terms of a set of scalar quantities, the multipole moments; then, they have been ex-
tended to GR, to describe the spacetime metric of a stationary, isolate object.

Let us start with Newtonian gravity. The Poisson equation is ∇2Φ = 4πGρ and we
have already seen that its solution

Φ(t, ~x) = −
∫

ρ(t, ~x′)

|~x− ~x′|
d3x′

can be expressed through a multipolar expansion of 1/|~x − ~x′| around ~x′ = ~0. If we also
expand in spherical harmonics Y lm(θ, φ) we can write:

Φ(t, ~x) = −
∑
lm

1

rl+1

4π

2l + 1
Ilm(t)Ylm(θ, φ) .

where

Ilm(t) =

∫
ρ(t, ~x)rlYlm(θ, φ)d3x .

are the multipole moments of the body.
This expansion can also be expressed in terms of symmetric-trace-free (STF) tensors:

Φ(t, ~x) = −
∞∑
l=0

1

rl+1

(2l − 1)!!

l!
I<i1···il>ni1 · · ·nil ,

where (2l − 1)!! = (2l − 1)(2l − 3)(2l − 5) · · · 1, and

ni = xi/r = (sin θ cosφ, sin θ sinφ, cos θ) ;

the brackets < · · · > denote the symmetric and trace-free part of a tensor, and

I<i1···il>(t) =

∫
ρ(t, ~x′)(xi1 · · ·xil − trace parts)d3x

are the multipole moments.
The components of the STF product of l vectors n̂, n<i1 · · ·nil>, are linear combinations

of the spherical harmonics with that value of l. For instance,

n<inj> = ninj − 1

3
δij
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is a 3× 3 matrix whose components are combinations of sines and cosines of θ, ϕ; it turns
out that there are five independent components, and they are linear combinations of the
five spherical harmonics Y2m. Similarly, n<injnk> = ninjnk minus complicate terms with
Kronecker deltas, are combinations of the seven Y3m, and so on.

The first terms in the expansion above are the monopole moment, which is the mass
M , and the quadrupole (l = 2) moment, which is the quadrupole moment

Qij = I<ij> =

∫
ρ(t, ~x′)

(
xixj − 1

3
δijr2

)
d3x .

Choosing the origin of the reference frame in the center of mass, the dipole (l = 1)
component identically vanishes. Thus, the first terms in the expansion are:

Φ(t, ~x) = −M
r
− 3

2

1

r3
Qijn<inj> + . . .

In the case of a stationary, axisymmetric body with symmetry axis k̂ = (0, 0, 1), the only
non-vanishing moments are Il0 and, defining

Ml ≡
√

4π

2l + 1
Il0 =

∫
ρ(~x)rlPl(cos θ)d3x ,

the expansion reduces to

Φ(~x) = −
∞∑
l=0

Ml

rl+1
Pl(cos θ) ,

where, M0 = M , M1 = 0 in the center-of-mass frame, M2 = Q quadrupole moment. With
the further assumption that the body (and then, the gravitational potential) is reflection-
symmetric across the equatorial plane, i.e., symmetric for θ → π− θ, then M2l+1 = 0: the
only non-vanishing multipoles are those with even values of l.

In STF notation, axisymmetry with respect to k̂ implies that I<i1···il> ∝ k<i1 · · · kil>.
Using normalization properties of STF tensors, it can be shown that

I<i1···il> = Mlk
<i1 · · · kil> .

For instance, the quadrupole STF tensor is (calling Q = M2):

Qij = I<ij> = M2(k
ikj − δij/3) = Q diag(−1/3,−1/3, 2/3) .

The theory of multipole moments has been extended in GR. Thorne has shown that
the far-field metric of a stationary, isolated object can be expressed, in a class of coor-
dinate systems called “asymptotically Cartesian mass-centered” (ACMC) in terms of an
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expansion in multipole moments:

g00 = −1 +
2M

r
+
∑
l≥2

1

rl+1

(
2

(2l − 1)!!

l!
Ma1···aln<a1 · · ·nal> + . . .

)
g0j = −2

∑
l≥1

1

rl+1

(
2l(2l − 1)!!

(l + 1)!
εjkalS<ka1...al−1>n<a1 · · ·nal> + . . .

)

The moments M<a1···al> are the mass multipoles and reduce in the classical limits to the
multipoles of Newtonian gravity. Indeed, in the weak field limit the Newtonian potential
is given by the 00 component of the metric:

Φ ' 1− g00
2

= −M
r
−
∑
l≥2

1

rl+1

(
(2l − 1)!!

l!
Ma1···aln<a1 · · ·nal> + . . .

)
(3)

= −M
r
− 3

2

Qij

r3
n<inj> + . . . (4)

But there is a new set of multipoles, the current multipoles S<a1···al>. For an axisym-
metric body, there is one mass moment Ml and one current moment Sl for each l:

M<i1···il> = Mlk
<i1 · · · kil>

S<i1···il> =
l + 1

2l
Slk

<i1 · · · kil> .

Note that the current moments exist also in Newtonian gravity: in the weak field limit

Ml =

∫
ρrlPl(cos θ)d3x

Sl =
2

l + 1

∫
ρvφrlP ′l (cos θ) sin2 θd3x ,

but in Newtonian gravity they do not appear in the gravitational potential. In particular,
S1 = J , it is the angular momentum of the body.

If the body is symmetric with respect to reflection with respect to the equatorial plane,
the mass moments have only even l, and the current moments have only odd l; thus, the
multipole moments with lowest values of l (typically, the most important) are the mass
M = M0, the angular momentum J = S1, the quadrupole Q = M2.

The multipole moments give a detailed description of the body. Their definition can
be extended to non-stationary bodies, and the time derivative of the multipole moments
characterize the gravitational wave emission. In particular, you all know that for a
slowly varying source the leading contribution to the GW emission comes from the time
derivatives of the quadrupole moment, through the quadrupole formula (in physical
units):

h̄ij(t, r) =
2G

rc4
d2

dt2
Qij
(
t− r

c

)
.

Subleading contributions to the gravitational waveform depend on time derivatives of
higher-order mass moments, and of current moments. Note that the quadrupole contri-
bution is the most important because (in GR) only moments with l ≥ 2 can contribute:
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monopole and dipole moments do not radiate; and higher-order multipoles have more
time derivatives, leading (since we assume the motion of the source to be v � c) to con-
tributions suppressed by orders of v/c. As we shall see, there are deviations of GR which
admit dipole l = 1 radiation; even a tiny correction to the equations of the theory may
lead to an observable effect, because the dipole radiation is enhanced by a negative power
of v/c.

Other remarks:

• Thorne’s definition of multipole moments is unique for all ACMC coordinate system;
still, it depends on the choice of requiring that the coordinates are ACMC, they
are not really defined as gauge-invariant quantities. A gauge-invariant definition
of multipole moments of a general stationary, asymptotically flat spacetime exists;
it is due to Geroch and Hansen, which uses the techinques - first introduced by
Penrose - to treat rigorously the “surfaces at infinity” of the spacetime through
conformal rescalings of the metric. In this way it is possible to define rigorously a set
of tensor quantities at infinity, the multipole moments {M<i1···il>, S<i1···il>}l=0,1,....
These quantities gauge invariant. Remarkably, it has been later shown that the
GH multipoles coincide with the Thorne multipoles, modulo normalization constants!

• A practical way to measure the multipole moments has been found by Ryan in
the nineties: the geodesic motion of a test body in a stationary, asmyptotically
flat spacetime depends on quantities which can be expressed in terms of the GH
moments. Let us consider circular, equatorial geodesics; they are characterized by a
constant energy (constant of motion associated with the timelike Killing vector) E;
let Ω = dφ/dt the angular velocity, and v = (MΩ)1/3 the velocity of the test body.
Then, by defining

∆E = −Ω
∂E

∂Ω
,

its expansion in v/c can be expressed in terms of the GR moments:

∆E =
v3

3
− v4

2
+

20

9

S1

M2
0

v5 −
(

27

8
− M2

M3
0

)
v6 + . . .

and the various terms contain the entire tower of multipole moments. Then, if -
by observations of the motion of smaller bodies around a central, larger body - we
can measure with great precision the function E(v) (i.e., E(Ω)), we can map the
spacetime of the compact object. In practice, it is not clear if this program
is feasible: we would need to know E(v) with incredible precision. Still, this is an
useful computational tool to find the gauge-invariant multipole moments of a metric
given in any coordinate frame.
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