Thermal-emission

Kilonova

Tidal-tail ejecta → r-process

Neutron capture rate much faster than decay, special conditions: $T > 10^9$ K, high neutron density 10^{22} cm⁻³

nucleosynthesis of heavy nuclei

radioactive decay of heavy elements

Power short lived RED-IR signal (days)

Li & Paczynski 1998; Kulkarni 2005 Metzger et al. 2010; Tanaka et al. 2014; Barnes & Kasen 2013

Shock-heated ejecta, accretion disc wind outflow, secular ejecta

- \rightarrow Weak interactions: neutrino absorption, electron/positron capture
- → Higher electron fraction, no nucleosynthesis of heavier element
- \rightarrow Lower opacity

- Kasen et al. 2015, Perego et al. 2014, Wanajo et al. 2010
- → brief (~ 2 day) blue optical transient

NUCLEOSYTHESIS: most elements above the iron peak are believed to be produced through neutron capture

The two extremes are

- s-process: neutron capture timescale is longer (slower) than the decay timescale
- r-process neutron capture timescale is faster (more rapid) than the decay timescale

basic reactions: a) n-capture: $n + (Z,A) \Rightarrow (Z,A+1)$ b) β -decay: $(Z,A) \Rightarrow (Z+1,A) + e + \overline{\nu}_e$

Z=proton number N=neutron number A=mass number=Z+N

r-process

Video r-process nucleosynthsis

https://www.youtube.com/watch?v=T44B9j3Vzxw

BNS and NS-BH mergers as factories of heavy elements in the Universe

Examples of r-process elements

Solar system abundances

Iridium Z= 77, A= 192

Platinum Z= 78, A= 195

Gold Z= 79, A= 197

Lead Z= 82, A= 207

R-PROCESS: ELECTRON FRACTION YE PLAYS DECISIVE ROLE!

Electron fraction = electron-to-nucleon ratio (n_p =proton density, n_n =neutron density, n_e =electron density)

$$\Upsilon_e = \frac{n_p}{n_n + n_p} = \frac{n_e}{n_n + n_p}$$

 High temperature (as ~ 10 MeV) → copious e⁻e⁺ pairs that activate the WEAK INTERACTIONS

$$e^{+} + n \longrightarrow p + \bar{\nu}_{e}$$
$$p + e^{-} \longleftarrow \nu_{e} + n$$

The e+ and v_e captures convert some part of neutrons to protons \rightarrow Ye increase

• High neutrino flux, neutrino-matter interactions \rightarrow Ye increase

$$\nu_e + n \longrightarrow p + e^-$$
 Neutrino-absorption

ΕЈЕСТА ТҮРЕ

i) dynamic a) tidal:

- equatorial
- cold
- low Ye~ 0.1
- -~1% Mo

b) shock-heated:

- polar
- hot
- higher Ye> 0.1
- ~1% Mo

ii) neutrino-driven winds

- polar
- higher Ye> 0.1
- -~1% Mo

iii) Secular

- isotropic
- broad range of Ye
- ~30% initial disk mass

~1 ms

~10-100 ms

~1s

From Rosswog et al. 2017

From Perego et al. 2014

From Siegel & Metzger et al. 2014

- $Y_e > 0.5$: no *r*-process
- ▶ $0.25 \leq Y_e < 0.5$: weak *r*-process
- $Y_e \lesssim 0.25$: strong *r*-process

Production of lathanides dramatically changes photon opacity

- no lanthanides: low opacity $(\kappa_{\gamma} \lesssim 1 \text{ cm}^2/\text{g})$
- presence of lanthanides: increased opacity $(\kappa_{\gamma} \gtrsim 10 \text{ cm}^2/\text{g})$

- ejecta mass and velocity \Rightarrow astrophysics
- opacity $\kappa \Rightarrow$ atomic physics
- radioactive heating rate ⇒ nuclear physics

- ejecta mass and velocity ⇒ astrophysics
- opacity $\kappa \Rightarrow$ atomic physics
- radioactive heating rate ⇒ nuclear physics

r-process opacity

- broader light curve
- suppression of UV/O emission and shift to IR

- ejecta mass and velocity ⇒ astrophysics
- opacity $\kappa \Rightarrow$ atomic physics
- radioactive heating rate ⇒ nuclear physics

 \rightarrow r-process nuclei synthesized are initially unstable and are disintegrated through β -decay, α -decay, and fission

Radioactive heating rate = energy deposition rate of the kinetic energy of decay products (electron, α -particles, and fission fragments) to the thermal energy of the ejecta

- ejecta mass and velocity ⇒ astrophysics
- opacity $\kappa \Rightarrow$ atomic physics
- radioactive heating rate ⇒ nuclear physics

Credit: Rosswog@GWPAW2017

KILONOVA

Courtesy of S. Ascenzi

Tidal Ejecta

unbound by hydrodynamic interaction and gravitational torques

Secular – isotropic

accretion disk matter unbound by viscous and nuclear heating

Red Kilonova

Peaks at days - 1 week after the merger

Shock-heated

squeezed mass at NS contact interface ejected by remnant pulsations

Blue Kilonova

Peaks at 1-2 day after the merger

Disk Winds

neutrino absorption or magnetically launched winds

longer-lived NS \rightarrow stronger neutrino irradiation

Cartoon picture

- "Winds", Ye ~ 0.3
- "weak r-process" (A <130)
- lanthanide/actinide-free
- moderately opaque \Rightarrow blue
- τpeak ~ 1 day

Kasen et al. 2015, MNRAS, 450

- Dynamic Tidal ejecta, Ye ~ 0.1
- "strong r-process"
- lanthanide/actinide
- very opaque \Rightarrow Red/IR
- τpeak ~ 1 week/10 days

Credit: Rosswog@GWPAW2017 Possible HST kilonova detection for short GRB130603B after 9.4 days (Tanvir et al. 2013, Nature ,500)

14

Examples of Optical kilonova ligth curves

Kilonova-Radio remnant

Significant mass (0.01-0.1 M_o) is dynamically ejected during NS-NS NS-BH mergers at sub-relativistic velocity (0.1-0.3 c)

Power KILONOVA
 short lived IR-UV signal (days)

RADIO REMNANT

long lasting radio signals (months-years)

produced by interaction of sub-relativistic outflow with surrounding matter

Piran et al. 2013, MNRAS, 430 Hotokezaka 2016, ApJ, 831, 190

Kilonova-Radio remnant + Radio sGRB afterglow

Hotokezaka 2016, ApJ, 831, 190

Key role of the circum-merger densities

Hotokezaka 2016, ApJ, 831, 190

X-ray emission from the long-lived NS remnant

- X-ray afterglow radiation produced by spindown energy extracted from the NS prior to collapse, slowly diffusing through optically thick environment composed of a pulsar wind nebula (PWN) and outer shell of ejected material
- signal peaks at 10²-10⁴ s after the merger
- Iuminosities 10⁴⁶-10⁴⁹ erg/s
- mostly in the soft X-rays (0.2-10 keV)

Siegel & Ciolfi 2016, ApJ, 819, 14 Siegel & Ciolfi 2016, ApJ, 819, 15

X-ray emission from the long-lived NS remnant

ISOTROPIC

BRIGHT

0

LONG LASTING

Siegel & Ciolfi 2016, ApJ, 819, 14 Siegel & Ciolfi 2016, ApJ, 819, 15

Rowlinson et al. 2013

The plateaus can be explained with the spin-down of magnetar or SMNS

"X-ray plateaus"

- Plateaus are found in a large fraction of long GRB X-ray light curves
- Possible evidence of ongoing central engine activity

Rowlinson+2013 found that ~50% Short GRB X-ray afterglows show a plateau phase in their light curves

NS-NS merger EM-emissions

Different timescale

BH-BH mergers \rightarrow EM emission

Stellar-mass BH mergers are not expected to produce detectable counterparts, due to the absence of baryonic matter (no NS tidal disruption → no accreting material)

Some unlikely scenarios that might produce unusual presence of matter around BBH:

- from the remnants of the stellar progenitors (Loeb,2016; Perna et al., 2016; Janiuk et al., 2017)
- the tidal disruption of a star in triple system with two black holes (Seto & Muto, 2011; Murase et al., 2016)
- enviroment of binaries residing in active galactic nuclei (Bartos et al., 2017; Stone et al., 2017)

17 August 2017, 12:41:04 UT

Credit: University of Warwick/Mark Garlick

Time from merger (seconds)

Coalescence of neutron star binary

17 August 2017, 12:41:04 UT

ata SIO NOAA, U.S. Navy NGA

GW170817

Credit: LIGO/Virgo/NASA/Leo Singer

Combined signal-to-noise ratio of 32.4

The signal comes from "blind spot"

The low signal amplitude observed in Virgo significantly constrained the sky position

The most extensive observing campaign ever....

GW observables

GW170817: PARAMETERS OF THE SOURCE

23 < *f /Hz* < 2048 Analysis uses source location from EM

Mass range 1.0 – 1.89 Mo
 1.16 – 1.60 Mo low spin

Masses are consistent with the masses of all known neutron stars!

OF AIT KHOWIT REQUOIT 5(AF5)

Abbott et al. 2018, arXiv1805.11579

TIDAL DEFORMABILITYTIDAL DEFORMABILITY \rightarrow how star gravitational potential changes when the star is squeezed by the gravity of the companion star

Tidal effects imprinted in gravitational-wave signal through binary tidal deformability:

$$\tilde{\Lambda} = \frac{16}{13} \frac{(12q+1)\Lambda_1 + (12+q)q^4\Lambda_2}{(1+q)^5} \qquad q = \frac{m_2}{m_1} \le 1$$

Deformability of each star: $\Lambda_{1,2} = \frac{2}{3}k_2\left(\frac{R_{1,2}c^2}{Gm_{1,2}}\right)^3$

where k2 = second Love number R = stellar radius. R and k2 are fixed for a given stellar mass by EOS k2 ~ 0.05–0.15 for realistic neutron stars k2 = 0 for BH

NS LABORATORY FOR STUDYING SUPER-DENSE MATTER

TIDAL DEFORMABILITY

$$\Lambda = (2/3)k_2[(c^2/G)(R/m)]^5$$

From only GWs we cannot say both components of the binary were NS

Post merger remnant?

Post merger remnant?

Post merger remnant?

NS-NS Low-Mass NS-NS SMNS (~~1 hour HMNS Tight Miss NS-NS (~~1 hour HMNS Tight Miss NS-NS BH + TORUS Sim. & vis., W. Kastaun

Heaviest NS or lightest BH known?

GW search:

- ringdown of BH around 6 kHz
 → LIGO/Virgo response strongly reduced
- short (tens of ms) and intermediate duration (≤ 500 s) GW signals up to 4 kHz

Abbott et al. 2017, ApJL,851

→ no evidence of postmerger signals, but it cannot rule out short- or long-lived NS

EM non-thermal emission

Short Gamma Ray Burst

GRB 170817A

- 100 times closer than typical GRBs observed by Fermi-GBM
- it is also "subluminous" compared to the population of long/short GRBs
- $10^2 10^6$ less energetic than other short GRBs

Abbott et al. 2017, APJL, 848, L13

Intrinsically sub-luminous event

or a classical short GRB viewed off-axis?

X-ray and radio emissions 9 and 16 days after the merger

10

Time since GW trigger [d]

100

ALTERNATIVES

After 150 days from the BNS merger...

..unexpected slow achromatic flux—rise until ~ 150 days!

D'Avanzo et al. 2017, A&A

Margutti et al. 2018, ApJL

Power-law spectrum extending for eight orders of magnitude in frequency

Non-thermal synchrotron emission radiation from **mildly relativistic ejecta with Γ ~ 3 – 10**

What is the nature of the mildly relativistic ejecta?

Isotropic outflow: choked jet or jet-less

Structured-jet viewed off-axis

[see e.g. Rossi et al. 2002, Zhang et al. 2002, Ramirez-Ruiz et al. 2002, Nakar & Piran 2018, Lazzati et al. 2018, Gottlieb et al. 2018, Kasliwal 2017, Mooley et al. 2017, Salafia et al. 2017]

Isotropic blast wave

+ radial structure

$\Gamma_1 < \Gamma_2 < \Gamma_3$ $E_1 > E_2 > E_3$

Account for the low luminosity

Shallow rise phase as t^{-0.8}

After 150 days from the BNS merger...decaying phase!

MULTI-WAVELENGTH LIGHT CURVES CANNOT DISENTANGLE THE TWO SCENARIOS!

[Margutti, et al. 2018, Troja, et al. 2018, D'Avanzo et al. 2018, Dobie et al. 2018, Alexander et al. 2018, Mooley et al. 2018, Ghirlanda et al. 2019]

RADIO HIGH RESOLUTION IMAGING

At the same epoch: structured jet has LARGER DISPLACEMENT and SMALLER SIZE than isotropic midly relativistic outflow!

[Gill & Granot 2018; Nakar+2018; Zrake+2018; Mooley+2018; Ghirlanda+2018]

Very Long Baseline Interferometry (VLBI) observations

Mooley, Deller, Gottlieb et al. 2018

→ Superluminal proper motion of the radio counterpart from centroid offset positions 75 and 230 days post-merger

Observations 207.4 days after BNS merger by global VLBI network of 32 radio telescopes over five continents constrain SOURCE SIZE < 2 mas

Ghirlanda et al. 2019, Science

SIZE CONSTRAINTS

Ghirlanda et al. 2019, science

Ruled out nearly isotropic, mildly relativistic outflow , which predicts proper motion close to zero and size > 3 mas after 6 months of expansion A relativistic energetic and narrowly-collimated jet successfully emerged from neutron star merger GW170817!

•

Kathirgamaraju et al., MNRAS 2018

Structured jet with a narrow ($\theta c = 3.4$) and energetic core (10^{52} erg) seen under a viewing angle of ~15 degrees

arising from the slower part of the jet or cocoon shock breakout?

- Multi-wavelength slowly rising emission by the deceleration of parts of the sheath progressively closer to the core;
- Flattening and peak mark the time after which emission is dominated by the jet core.

Ghirlanda et al. 2018, arXiv:1808.00469

If such a jet observed on-axis \rightarrow isotropic equivalent luminosity $\geq 10^{51}$ erg s⁻¹