Radioactively powered transients

First run O1, second run O2, and half of third run O3a

O3a Event Rate

39 candidate GW events in ~26 weeks of O3a (FAR 2 per year → contamination fraction of less than 10%)

26 candidate events low-latecy reported in GCN alerts + 13 candidate events offline analysis

LVC Catalog paper, arXiv: 2010.14527

O1, O2, O3 \rightarrow 50 candidate GW events

Masses in the Stellar Graveyard

LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

TOTAL MASS vs MASS RATIO

LVC Catalog paper, arXiv: 2010.14527

Notable candidate events

 \rightarrow intermediate massive BH

LVC Catalog paper, arXiv: 2010.14527

GW190425: another BNS detection!

	Low-spin Prior $(\chi < 0.05)$	High-spin Prior $(\chi < 0.89)$
Primary mass m_1	1.60–1.87 M_{\odot}	$1.61-2.52 M_{\odot}$
Secondary mass m_2	$1.46 - 1.69 M_{\odot}$	1.12–1.68 M_{\odot}
Total mass $m_{\rm tot}$	$3.3^{+0.1}_{-0.1}M_\odot$	$3.4^{+0.3}_{-0.1}M_{\odot}$
Luminosity distance $D_{\rm L}$	$159^{+69}_{-72} \mathrm{Mpc}$	$159^{+69}_{-71} \mathrm{Mpc}$

NO firm EM counterpart!

Sky localization of 8284 deg^2

Abbott et al. 2020, ApJL, 892

GW190814: FIRST NS-BH or low-mass BBH?

Updated 2020-05-16 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

GW190814

	EOBNR PHM	Phenom PHM	Combined
Primary mass m_1/M_{\odot}	$23.2^{+1.0}_{-0.9}$	$23.2^{+1.3}_{-1.1}$	$23.2^{+1.1}_{-1.0}$
Secondary mass m_2/M_{\odot}	$2.59^{+0.08}_{-0.08}$	$2.58\substack{+0.09\\-0.10}$	$2.59^{+0.08}_{-0.09}$
Luminosity distance $D_{\rm L}/{\rm Mpc}$	235_{-45}^{+40}	249^{+39}_{-43}	241^{+41}_{-45}
Source redshift z	$0.051\substack{+0.008\\-0.009}$	$0.054\substack{+0.008\\-0.009}$	$0.053\substack{+0.009\\-0.010}$
Inclination angle Θ /rad	$0.9^{+0.3}_{-0.2}$	$0.8^{+0.2}_{-0.2}$	$0.8\substack{+0.3\\-0.2}$

GW190814

Abbott et al. 2020, ApJL, 896

- NO evidence of measurable tidal effects in the GW signal
- NO EM counterpart
- → Consistent with both BBH and NSBH scenarios
 → In the NSBH, observation results can be explained by the large mass ratio

Sky localization of 18.5 deg²

Optical counterpart search

S190814bv - Sky Localization and Coverage

Ackley et al. 2020, A&A

→ Upper limits from the wide-field instrument follow-up campaign

Galaxy targeted upper limits \rightarrow

Observations allow us to exclude a KN with large ejecta mass $M > 0.1 M_0$ to a high (> 90%) confidence

Ackley et al. 2020, A&A

GW190521

The birth of a intermediate massive black-hole!

Credit: Mark Myers, ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav)

credit: LIGO/Caltech/MIT/R. Hurt (IPAC)

Abbott et al 2020, PRL, 125 Abbott et al 2020, APJ, 900

BBH in the accretion disk of a supermassive black hole?

Caltech/R. Hurt (IPAC)

Graham et al 2020, PRL 124

ZTF detected a candidate counterpart(!?)

- EM flare close to AGN
- ~ 34 days after the GW event
- consistent with expectations for a kicked BBH merger in the accretion disk AGN
- 765 deg² localization area
- ZTF observed 48% of the 765 deg² (90% c.r.)

GW190426_152155

Event	${m_1 \atop (M_{\odot})}$	${m_2 \atop (M_{\odot})}$	$\chi_{ m eff}$	$D_{\rm L}$ (Gpc)	z	SNR
GW190426_152155	$5.7^{+4.0}_{-2.3}$	$1.5^{+0.8}_{-0.5}$	$-0.03\substack{+0.33\\-0.30}$	$0.38\substack{+0.19\\-0.16}$	$0.08\substack{+0.04\\-0.03}$	$8.7\substack{+0.5 \\ -0.6}$

Highest FAR: 1.4 yr⁻¹

One of the most likely to be noise among the candidate event list

Data are uninformative about potential tidal effects

NSBH?

DL = 380 Mpc, 90% c.r. 1400 sq. degrees \rightarrow NO EM counterpart

Next observative runs

Strain sensitivities as a function of frequency

Observing run timeline and BNS sensitivity evolution

	01	02	2 🛑 03 🗖	04	05
LIGO	80 Мрс	100 Мрс	110-130 Mpc	160-190 Мрс	Target 330 Mpc
Virgo		30 Мрс	50 Mpc	90-120 Mpc	150-260 Mpc
KAGRA			8-25 Mpc	25-130 Mpc	130+ Mpc
LIGO-India				AdV+	Target 330 Mpc
2015	2016	2017 2018	2019 2020 2021	2022 2023	2024 2025 2026

O5 volume = 15*O3 volume

GW sky localization for CBC

GW sky localization for CBC

90% c.r. area distance Redshift 0.01 0.1 1.00 1.00 GW170818 GW170817 GW170817 GW170818 BNS NSBH Cumulative fraction of events 0.20 0.20 220 events BBH 0.75 O3/HLV O3/HLVK Cumulative fraction of O4/HLVK 0.50 BNS NSBH BBH 0.25 O3/HLV O3/HLVK O4/HLVK 0.00 0.00 0.1 10 100 10³ 10^{4} 10 100 10³ 90% credible area (deg²) Luminosity distance (Mpc)

90% c.r. volume

Abbott et al. 2020, LRR

Luminosity

 10^{4}

LOCALIZATION: sky-area and volume

Abbott et al. 2020, LRR

		BNS	NS-BH	BBH
		Area (deg ²) 90% c.r.	Area (deg ²) 90% c.r.	Area (deg ²) 90% c.r.
O3	HLV	270^{+34}_{-20}	330^{+24}_{-31}	280^{+30}_{-23}
O4	HLVK	33^{+5}_{-5}	50^{+8}_{-8}	41^{+7}_{-6}
		Comoving Volume (10^3 Mpc^3) 90% c.r.	Comoving Volume (10^3 Mpc^3) 90% c.r.	Comoving Volume (10^3 Mpc^3) 90% c.r.
O3	HLV	120^{+19}_{-24}	860^{+150}_{-150}	16000^{+2200}_{-2500}
O4	HLVK	52^{+10}_{-9}	430^{+100}_{-78}	7700^{+1500}_{-920}

Detection: SNR > 4 in at least two detectors and network SNR > 12

- O4 HLVK → median sky localization a few tens of square degrees
- 38-44% (12 16%) BNS are expected to have a 90% credible region smaller than 20 deg² (5 deg²)

O1, O2, O3 astrophysical Implications: merger rate

Population-level analyses of all-GWTC-2 reveals

- BBH merger rate $\mathcal{R}_{BBH} = 23.9^{+14.9}_{-8.6} \,\mathrm{Gpc^{-3}\,yr^{-1}}$
- BNS merger rate $\mathcal{R}_{BNS} = 320^{+490}_{-240} \, \mathrm{Gpc^{-3} \, yr^{-1}}$

LVC Populations paper, arXiv:2010.14533

- the BNS rate based on the two confident BNS detections: GW170817 and GW190425
- Assume a uniform BNS mass distribution between 1 Mo and 2.5 Mo with zero spins

O1, O2 Astrophysical rate → Detection rate

EXPECTED NUMBER OF DETECTIONS FOR O3 and O4

detection counts per one-calendar-year observing run

Detection: SNR > 4 in at least two detectors and network SNR > 12

Observation Run	Network	Expected BNS Detections	Expected NSBH Detections	Expected BBH Detections
03	HLV	1^{+12}_{-1}	0^{+19}_{-0}	17^{+22}_{-11}
O4	HLVK	10^{+52}_{-10}	1^{+91}_{-1}	79_{-44}^{+89}

O1, O2 Astrophysical rate

EXPECTED NUMBER OF DETECTIONS FOR O3 and O4 detection counts per one-calendar-year observing run

SNR > 12

Observation Networ Run	k Expected BNS Detections	Expected BBH Detections	Detection: SNR > 4 in
O3 HLV	1^{+12}_{-1}	17^{+22}_{-11}	at least two detectors and network SNR > 12
Abbott et al. 2020, LRR	\$	\$	
	0.6 per year	20 per year	
	BNS	BBH	Six months
O3a	1	36	About network SNR

vork SNR > 8

LVC Populations paper, arXiv:2010.14533

$$R_{BNS} = 110 - 3840$$

 $Gpc^{-3} yr^{-1}$ $R_{BBH} = 25 - 109$
 $Gpc^{-3} yr^{-1}$ $O1, O2 Astrophysical rate$ $R_{BNS} = 80 - 810$
 $Gpc^{-3} yr^{-1}$ $R_{BBH} = 15 - 39$
 $Gpc^{-3} yr^{-1}$ $O1, O2, O3 Astrophysical rate$

EXPECTED NUMBER OF DETECTIONS FOR O3 and O4 detection counts per one-calendar-year observing run

Observation Run	Network	Expected BNS Detections	Expected BBH Detections
03	HLV	1^{+12}_{-1}	17^{+22}_{-11}
O4	HLVK	10^{+52}_{-10}	79_{-44}^{+89}

Abbott et al. 2020, LRR

Detection: SNR > 4 in at least two detectors and network SNR > 12 About FAR < 1/100 yr

3G detector

The European 3G idea

Europe we developed the idea of a 3G GW observatory

- Factor 10 better (x1000 Volume) than Advanced (2G) detectors
- Wide frequency, with special attention to low frequency (few HZ)
- Capable to work alone (but aiming to be in a 3G network)
- 50-years lifetime of the infrastructure

Recently submitted ESFRI proposal

3G effort worldwide

NSF funded in 2018 the Conceptual Design Study of a 3G facility: Cosmic Explorer: 40km – L shaped detector

Einstein Telescope

Detection horizon for black-hole binaries

What ET and future EM observatories can do?

Binary systems of Compact Objects

- Study BNS/NSBH/BBH along the cosmic history
- Large increase of detatction rate
- Better parameter estimation

Cosmology

ET capabilities

Astrophysical simulations for BNS from population synthesys code

EINSTEIN TELESCOPE DETECTION/SKY LOCALIZATION up to z=0.26

ΕT

ET+LIGO/Virgo/KAGRA/LIGOindia

ET SNR>12 and LKVI included when SNR > 4

1 year of observations

Up to z=0.26

- Among ~4000 mergers per year detected 3210 per year
- For ET 104 per year have sky loc < 10 sq. degrees
- For ET+LVKI 1468 per year have sky loc < 10 sq. degrees
- For ET+LVKI 284 per year have sky loc < 1 sq. degrees

Prelimiary results by Stefan Grimm, GSSI

EINSTEIN TELESCOPEDETECTION/SKY LOCALIZATION up to z=1.8 =T ET+CE

1 week of observations

- Among ~10⁴ mergers per week up to z=1.8 detected 1492
- For ET+ CE 128 per week have sky loc < 10 sq. degrees

Prelimiary results by Stefan Grimm, GSSI

Sensitivity (in terms of observable distances) and sky-localization capabilities of ET determine the observatories able to effectively operate in synergy with ET

- ET as single detector median BNS localization of 100 deg² at a distance of \leq 200 Mpc
- operating with a network of five 2G detectors similar localization up to about 1 Gpc
- going to larger distances the ET localization larger than 10³ 10⁴ deg² for the majority of the sources

These localizations require large FoV instruments

and follow-up observations to characterize the nature of the counterpart

Thermal and non thermal emission components associated with BNS and NSBH merger

Ascenzi et al. 2020 arXiv:2011.04001

THERMAL EMISSION - KILONOVAE

OPTICAL BAND

Adapted from Chornock+ 2019

- Too faint counterpart
 - Large sky-localization/many contaminants

Joint detections for ET limited by optical instruments capabilities!!

- The Vera C. Rubin Observatory survey able to detect kilonova emission up to 800 Mpc
- BNS mergers detectable in this volume are of order 10³ per year
- A few hundred kilonova are expected to be in the Rubin Observatory surveyed field
- → For the majority of these sources, the GW localization by ET will make it difficult to identify the optical counterpart among many contaminants

→ Joint GW/kilonova detections (of order of several tens) becomes possible considering ET+2G

Promising UV wide-FoV detector

The 39-m E-ELT able to observe the kilonova up to $z \sim 0.5$ photometrically, and up to $z \sim 0.3$ spectroscopically

JOINT GW/KILONOVAE

Limited to near Universe

Strong benefit of the higher sensitivity of ET with respect to 2G detectors \rightarrow better precision of PE for the progenitor system and the merger remnant

unprecedent opportunity to understand the unveil of state of neutron stars

WHY HIGH-ENERGY?

Ghirlanda

- GRB detectable up to high z
- Small number of contaminants
- Promising wide FoV hard-soft Xray instruments
- Good sky localization to drive a prompt EM follow-up

May 2018: THESEUS selected within ESA Cosmic Vision science programme as midium class mission concept for study with SPICA and EnVision Venus

THESEUS MISSION CONCEPT \rightarrow a unique combination of instruments:

Amati et al. 2018

Soft X-ray Imagers (SXI)

- 4 Lobster-eye telescopes
- 0.3-5 keV
- FoV ~ 0.5 sr
- Location accuracy ~ 0.5'-1'

X-Gamma-ray Imager Spectrometer (XGIS)

- 3 Coded mask telescopes + X(Si) Gamma(CsI) ray cameras
- 2 keV 10 MeV
- FoV ~ 2 for 2-150 keV band and > 4 sr for > 150 keV band sr (overlapping SXI)
- Location accuracy ~ 5'

InfraRed Telescope (IRT)

- 0.7mt class telescope
- 0.7-1.8 mm (IZYJH)
- FoV: 15'x15'
- Imaging (H=20.8;150 s) and high resolution spectroscopy (H=17.5;1800s) capabilities (→ redshift)
- BROAD FIELD OF VIEW (more than 1sr) with ACCURATE LOCALIZATION (down to 0.5'-1' in the X-rays)
- LARGE SPECTRAL COVERAGE from 0.3 keV up to several MeV
- an on-board prompt (few minutes) follow-up with a 0.7 m CLASS IR TELESCOPE with both imaging and spectroscopic capabilities

THESEUS will detect all types of GRBs (long, short/hard, weak/soft, high-redshift) and localize them from a few arcmin down to arcsec and measure the redshift for a large fraction of them

THESEUS will detect between one and two orders of magnitude more GRBs at any redshift, and most notably in the high-redshift regime (z>6)

THESEUS in Multi-Messeger context

On-axis short GRB detection rate of THESEUS di 12/yr within 1' - 5' about 25% is expected to be detected also with IRT with arcsec loc

Maximum THESEUS/XGIS detectable distance versus viewing angle.

At the typical ET range for BNS (330 Mpc)

→ THESEUS can detect a GRB up to a viewing angle of ~20-40°, potentially increasing the event rate by a factor of >20-100 the on-axis rate

THESEUS in Multi-Messeger context

Credit THESEUS Yellow Book

Aligned+misaligned short GRBs

THESEUS in Multi-Messeger context

V sky and

GW detectors Prelimina	ary ESEUS+GW detectors plausible joint observation time	aligned short GRB+GW detections	aligned & misaligned short GRB+GW detections
2G network z<0.107 (500 Mpc)	3.45 yr	~0.04	1.8
ET	1 yr (3.45 yr)	5.6 (19.2)	13 (46)
ET+CE	1 yr (3.45 yr)	7.4 (25.7)	16 (55)
ET+2CE	1 yr (3.45 yr)	8.7 (30.1)	18 (61)

Credit THESEUS Yellow Book

Optical afterglow detection with THESEUS/IRT

OTHER PROMISING HIGH-ENERGY COUNTERPARTS for SXI (0.5- 5 KeV sky loc < 1-2'

Magnetar? or

High latitude emission from structured jet?

GRB X-ray plateaus explained by structured jets

What happen off-axis?

Ascenzi et al. 2020 A&A

Promising X-ray couterparts!

Off-axis X-ray emission from short GRBs observed by SXI

GRB 140903A placed at z=0.5 0.5-10 keV lightcurves

Credit: Ronchini, Ascenzi, Oganesvan A large fraction of short GRB show an EXTENDED EMISSION during the prompt phase a softer and prolonged emission lasting a few tens up to hundreds of second

- Very uncertain fraction of short GRB with EE and degree of collimation
- Assuming 50% and a cone semi-aperture angle of 20°
 → about 100 joint EE+GW detections for 3G detectors

Credit THESEUS Yellow Book in prep

HERMES constellation of cubesat

- From a few to hundreds detectors single
- Collecting area \geq 50cm², total collecting area \geq 1m²
- Energy range 3-10 300-1000 keV
- Temporal resolution a few hundred ns

Credit: Fiore, Nava, Ghirlanda

SKY LOCALIZATION

Pathfinder $\rightarrow \sigma Pos \sim 2.4 \text{ deg}$

Constellations $\rightarrow \sigma Pos \sim 15 \text{ arcmin}$

HERMES GRB detection capabilities

Pathhfinder: launch 2022, ASI provided

- Short GRB Population Based on Ghirlanda et al. 2016
- BNS detectable rate from GWTC-2, LVC 2020 taking into account ET detection efficiency
- Assumed that all BNS produce a jet
- It considers short GRB observed off-axis

Next decades multi-messenger observatories

