PHYSICS OF COMPACT OBJECTS IN GENERAL RELATIVITY AND BEYOND
LECTURES 4-5

A. The QNMs of a BH

When a BH is excited by a non-radial perturbation, it oscillates in its proper modes,
i.e. the modes of free oscillations. They are called quasi-normal modes because, in
contrast to the normal modes of Newtonian gravity, they are damped: the oscillating BH
loses energy through GW emission. Therefore, the frequencies of the QNMs are complex:

Ww=wpt+iwr;

any quantity with a time dependence ~ e~ with w; < 0 describes a damped oscillation

efiwt — efinteoJIt’
where the oscillation frequency of the mode is v = wg/(27), and the corresponding e-
folding time, the damping time, is 7 = L

The QNMs of a Kerr BH are a dlscrete Set of complex frequencies wy,;,,, where Im are
the harmonic index of the corresponding metric perturbation (see below), and for each
value of Im the different QNMs are labelled by the integer number n =0,1,...; then =0
mode is the fundamental mode, while those with n > 0 are the overtones, typically more
difficult to excite, and then generally less relevant.

The perturbation of a stationary BH can be of any kind, even a stone thrown toward
the BH, but very few perturbations can excite the QNMs with amplitude large enough
to allow the detection of the corresponding GWs. Only two possible sources are believed
to be strong enough, and both are associated with the birth of the BH: a gravitational
collapse associated with a supernova explosion, or the coalescence of two compact objects
(other BHs, or NSs).

The SN explosion is one of the target sources for ground-based interferometer, but we
must be lucky, or patient, to see it: either a galactic SN explodes while the 2nd generation
detectors are taking data (the rate for galactic SNae is one, or very few, per century);
or we have to wait for 3rd generation detectors, to see SNae in the surrounding of our
galaxy. The compact binary coalescence GW signal is much stronger, and indeed we have
already seen it: the stronger BBH coalescence we have seen (which happened to be also
the first one), GW150914, allowed to observe, although marginally, with a very low SNR,
and very large error bands, the fundamental mode (n = 0) with [ = m = 2 of the BH
born from the coalescence, with a frequency of about v = 250 Hz and a damping time of
about 4ms, consistent with the theoretical prediction.

When, especially with next generation detectors, we will be able to measure not only
the most excited mode, but also other modes - in general the signal is a linear combination
of several modes, but n = 0, [ = m = 2 is by far the most excited - this set of numbers
will provide a formidable test of the Kerr nature of the BH spacetime, that is a test of
the no-hair theorem, and of GR.
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Let us briefly discuss the theoretical modelling of BH QNMs, and the approach to
compute them. For who is interested to further details, several reviews exist on the sub-
ject, such as: Kokkotas, Schmidt arXiv:gr-qc/9909058; Ferrari, Gualtieri arXiv:0709.0657;
Berti, Cardoso, Starinets arXiv:0905.2975.

Let us consider a perturbation of a BH spacetime. For simplicity I will consider the
Schwarzschild spacetime,

2M
ds* = —fdt* + f~1dr* + r*(d6” + sin® 0dp?) with f=1-—,
.

but the same, although more complicate, applies to the Kerr spacetime.

Before discussing the perturbations of Schwarzschild spacetime, it is instructive to
consider a much simpler problem, the dynamics of a scalar field 1(t,r,0,) on the
Schwarzschild background, assuming that it is a “test” field, with amplitude so small
that we can neglect the terms O(¢?), and then - since its stress-energy tensor is O(1)?),
we neglect the effect of the scalar field on the metric. We have then just the Klein-Gordon
equation on a fixed, curved background:

p = V, V4 =0,

where V,, are the covariant derivatives. By computing the covariant derivatives, it is easy
- I leave it to you as exercise - to show that this equation can be written as

1 0? 0? 0 1 0? 0 1 0?
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Since the background is spherically symmetric, to simplify this equation it is very con-
venient to perform a spherical harmonic decomposition of the scalar field, i.e. to expand
the scalar field ¥ (¢, 7,0, ) in a basis of complex functions of the angular variables, the
spherical harmonics {Y'™ (6, ¢)}, which are the eigenfunctions of the operator in square
parentheses (which is also the angular part of the Laplacian operator in polar coordinates):

82Ylm aylm 1 82Ylm

20 + cot 6 50 +sin29 0 = Il +1)Yy"™

with [ =0,1,... and m = —[,—[+ 1,...,l. Due to the orthogonality property
/ Yy ™ dQ = 616
they form a complete basis: we can expand the scalar field in spherical harmonics:
W(t,r,0,p) = ZletrYlT”@gp)
and the coefficients Ry, can be obtained from the orthogonality relation:

Rim =/dﬂw<t,r,e,¢>ylm*(0,w>-



The Klein-Gordon equation then becomes:

2R, 2R, p o 10+1
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Multiplying this equation by Y*™ * integrating over the solid angle and using the or-
thogonality condition, we obtain an infinite set of decoupled equations for the functions
Ry (t,r) only:

0 Ry 9 Ry 2f\ ORppy (1 +1
e A +(f,r+_f) e

/ or? ot? or r2

The fact that we get decoupled equations (i.e., the equations for Ry, with different s are
not mixed and can be solved separately) is a consequence of the fact that the background
is spherically symmetric; in the case of Kerr background, we would get equations that
couple perturbations Ry, with different [’s; this problem can be overcome by using a
different basis of angular functions, the spheroidal harmonics, with which the equations
with different I’s are decoupled.

Now, we redefine the scalar field as

m(Z,
Rim(t,7) = Yun(t, 1)
r
and we define the tortoise coordinate
d
re =1+ 2M log ‘ﬁ — 1‘ which satisfies :* =f,

the KG equation can be written in the form of a one-dimensional wave equation

82¢lm(t7 T) o a277ZJI7’l"b(t7 T)
or? ot?
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where

is the effective potential, which is due to the spacetime curvature (in flat spacetime [M =

0] Vsealar (1) = [(1+1) /r?, the usual centrifugal term, a monotonically decreasing function,

while for M # 0 it is a potential barrier as in the figure below). Thus he scalar field

propagates in the Schwarzschild background as a wave scattered by the effective potential.
By Fourier transforming

+o0 _ )
in(tr) = | dw G r)e
we get the equation in the frequency domain, an ODE in the radial function @zm (w,r):

O* i (w, )

e + [w2 - Vgscalar(rﬂ &lm(wy 7,,) —0.
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Some remarks about this wave equation. First of all, the tortoise coordinate r,; it is

very useful to describe the physics near the horizon, and has the property

dr, 1

dr — f°
For a radial lightlike geodesic (0, ¢ constant)
ds* = —fdt* + frdr? = — f(dt* — dr?) = — f(dt — dr,)(dt + dr,) =0

and thus radial massless particles have t—r, = const (outgoing) or t+r, = const (ingoing).
When r > M, r, >~ r, but as r — 2M, r, — —oo; thus, r, € [—00, 00| describes the
region outside the horizon, r € [2M, 0o]. It owes its name to the famous Zeno’s tortoise:
the coordinate r, “never” reaches the horizon » = 2M, but approaches it logarithmically.

Both when r, — —o0, i.e. r — 2M and when r, ~ r — o0, the effective potential
vanishes, and the equation becomes a simple wave equation whose solutions are e and
e~%r=  Therefore, the asymptotic solutions of the wave equations for r, — 400 can be
written as

lz)lm(wa T) = Az’ne—iwr* + Aouteiw” .

and, making the inverse fourier transform,
1 . .
~ o —tw(re+t) iw(rs«—t)
m\Y — m out .
Ui (t, 1) gy /dw[A e + Aoue ]
s

Here we have considered ,,(t, r) a general function of time, and w is just the parameter
of the Fourier transform, so it is necessarily a real quantity. Let us, instead, look for a
particular kind of solution, one that describes a damped oscillator ~ ¢, where now w is
in general a complex quantity, to be determined. This means that we make an ansats:

Yim(t,7) = i (r)e " = i (r)e ™R = gy (r)e Rt
Then the asymptotic solution, either at 7. — oo (infinity) or at r, — —oo (horizon), is:
Vi (t,7) = Agpe™@0HD A0

The first term describes an ingoing wave, moving towards smaller values of r,, and the
second describes an outgoing wave, moving towards larger values of r,.

If we are interested in the free oscillations of the black hole, we have to impose that no
wave is incoming from infinity, i.e.

Uy (1) o el re = 00.

As a consequence, Ay, = 0 as r, — 0o. In addition, since nothing can escape from a black
hole horizon, only ingoing waves are allowed when r, — —o0, i.e.

Uy (1) o g Ty — —00,

therefore, A,y = 0 as r, — —oo. We have then a second-order ODE for 1, (1) - the wave
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equation, a Schroedinger - like equation with an effective potential - and two boundary
conditions to be satisfied at r, — £o0. Similarly to the case of the Schroedinger equation,
the boundary conditions can be satisfied only for a discrete set of eigenfrequencies w.

Let us now consider gravitational perturbations of the metric

Guv = g;(f;]/) + huu

where gl(f,),) is Schwarzschild’s metric, and hy,, (¢, 7,0, ¢) is a small perturbation of the metric.
You have already seen, when studying GWs, the perturbations of flat spacetime, g,, =
Nuw + hyw; in this case, near a BH (but the same occurs near a NS), the background
is in the strong-field regime, and we can not expand the metric around flat space. We
shall assume that the perturbation, and its derivatives, are small, thus neglecting terms
quadratic in the perturbation, which we will denote as O(h?).

Replacing the expansion in Einstein’s equations and dropping O(h?) yields a linear
differential equation in h,,; on other words, we linearize Einstein’s equations.

It is important to note that since I'} ; = Fgg“(g(o)) + 6T 599, ), the first term is the
Christoffel computed in the background, the second is its correction, linear in A (and we
neglect O(h?) terms). Then,

huvia = Mya — TPy — 6T 0 b + (1 5 v)

but the latter term is O(h?) and is neglected. Therefore, in the following we shall perform
the covariant derivatives on the metric perturbation using the background metric only.
For the same reason, we shall raise its indices with the background metric:

ht = g(O)/mhw + O(h2) '
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This means that we can treat h,, as it is just a field living on the background space-
time. And we can consider its field equation, i.e. the linearized Einstein’s equation, as
an equation on the Schwarzschild spacetime, as we have done for the scalar field.

A simple but a bit tedious computation (the steps of it are done of course in the original
papers of Regge, Wheeler and Zerilli, but also in books such as Chandrasekhar’s book
The Mathematical Theory of BHs, and also more recently in other books as e.g. Ferrari
et al. GR and its applications) shows that

20 =0y, 00 = P — 9° " hyviop -

The linearized Einstein’s equations in vacuum are just 67, = 0.

In order to solve this equation, we expand the field h,,, (¢, r, 0, ¢), defined on Schwarschild’s
spacetime, in tensor spherical harmonics. Being spherically symmetric, Schwarschild’s
spacetime My is the product of two two-dimensional manifolds,

M4:M2XSQ.

The two-sphere S? is described by the coordinates y* = (6, ¢), while M, is described by
the coordinates z4 = (,7):

ot = (zA,y“) )

The metric on the submanifold S? is v,, = diag(1,sin®#), and we denote the covariant
derivative with respect to this metric with a colon.

Any tensor can be decomposed as a tensor on M, times a tensor on S2. With this
decompositon, a vector field is split as V# = (V4, V%), and the components of a rank-two
symmetric tensor field X, are split as

Y (XAB XAa>
m XaA Xab ‘
Note that with this decomposition, X5 are scalar with respect to the submanifold S2,
while X, 4 are vectors, and X, are rank-two symmetric tensors with respect to the same
manifold.
Now, we have seen that a scalar field on the two-sphere can be decomposed in the
complete basis of scalar spherical harmonics Y™ (6, ¢). Similarly, it can be shown that

any vector field on the two-sphere, V,, can be decomposed in the complete basis of vector
spherical harmonics, formed by the polar vector harmonics

Vi =i = (Y

and the azial vector harmonics

m __ by Ilm im _: Im .
Syt =—e, V" = (— Y., sin0Yy > ;

sin @

Vo= Y VoY + Virym).
Im
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Similarly, a symmetric tensor X, can be decomposed in a trace part v,Y "™, and in
the complete basis of traceless rank-two tensor harmonics, formed by the polar rank-two
tensor harmonics

I(1+1)

2ty = vip + gy

and the axial rank-two tensor harmonics

Sty = S5k 4+ 54
These are just 2 x 2 matrices of combinations of derivatives of the scalar spherical har-
monics, combined with sines and cosines of #. Note that there are two kinds of vector and
tensor harmonics, called polar and axial, or even and odd: for a parity transformation
0 — m—0, p — p+27, apolar (i.e. even) spherical harmonic transforms as (—1)! (like the
scalar harmonics Y!™), while an axial (i.e. odd) spherical harmonic transforms as (—1)"*+1.
As I said, these harmonics form a complete basis, and harmonics of the same rank but
with different values of [, m are orthogonal; axial and polar harmonics are orthogonal,
too.
So, we expand the metric perturbation in tensor spherical harmonics:

hAB (t7 T, 97 90) = Z BABlm(ta r)ylm(e, QD) )

lm

haa(t,7,0,0) = 3[R0, (L)Y (0,0) + Wit 7) S (0,9)]

lm

hab(ta T, 07 90) - Z [Tz (Klm(t7 T)fyabylm(€7 QO) + Glm(tv T)Zaltzn<07 90))

im

Hhum (t,7) S5 (0, )] -
We have the freedom to choose the gauge i.e. to make a coordinate transformation

ot — 't =t + e (x)
where we require the expansion g, = g,(g,) + h, to be preserved, with g,(g,) Schwarzschild
and h,, small, and thus it has to be ¢ = O(h). With such transformation, it can be
shown that the metric perturbation changes as:
hyw — h;w = hyy + €uw + €y -

It is possible to show that choosing carefully the functions e”(t,r, 6, ), it is possible to
set to zero some of the terms of the expansion above:

Bg?in(t, r) = hPo! (t, 1) = Gin(t,7) = him(t,7) = 0.

1lm
This is the so-called Regge-Wheeler gauge. Then, we call
f(T)Holm(t,T‘) Hllm(tar)

BABlm(ty T) =
Hllm(t>r) f(r)_lH2lm<t7T)
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and we choose the ansats of a damped oscillating solution, depending on the complex
frequency w, to be determined. Then, we can write

hu(t,7,0,0) = hE2(t, 7,0, ) + A (t, 7,0, )

%
with
FHom(r) I‘llum(?“) 0 0
pol _ * fﬁ H2 lm(r) 0 0 Im _—iwt
h;u/ (ta Ty 97 90) - * * T2Klm<7n) 0 Y™e )
* * * 2 sin? 0 K, (1)

and

00 —hOZm(T)LYme ho i (1) sin OY 5™

sinf ~,

*

h?;;i(t, r, (97 80) = 0 —hllm (r)LY(lpm hy lm<t> $in HY:ém e*iwt )

sinf ~,

* 0 0

% ok * 0

*

The perturbation then depends, for each [, m, on a set of polar functions { Ho ,, (1), Hy 1 (7),
Ho (1), Kin (1) }, and a set of axial functions {hop,(7), h1m(r)}. One has to replace this
expansion in the field equations for A,

20R, = hpv;up + hpu;Vp B hpp;uv o go " Pyriorp »
and decompose 0, in tensor spherical harmonics in the same way. Then, one is left, for
each [, m, with a system of ODEs in r for the polar and axial pertubation functions.

The equations for the perturbations with different values of [, m are compeltely decou-
pled, then we can solve separately each harmonic contribution. As in the case of the
scalar field, this is a consequence of the spherical symmetry of the background; in the
Kerr case, the same result can be obtained using a different set of harmonic functions,
the spin-weigthed spheroidal tensor harmonics, but in that case there is no separation in
polar and axial harmonics.

By combining and manipulating these equations, one can find that they reduce to two
wave equations, one for axial perturbations, one for polar perturbations, and that these
wave equations have the same structure as the scalar field equations we have discussed
before.

Let us consider axial perturbtions {hg;,(7), h11m(r)}. By defining the Regge-Wheeler
function ;,,,

hiy
le = f = :
r
one of the equations implies that

if

Z (le’l“)/ .

h()lm =



The other equations, combined, yield the Regge-Wheeler equation

d2le
dr?

+ <w2 _ Vzaxial) le =0

where

S (1_ 2M> [l(l+1) 6M} |

r r2 g3
In the case of the polar perturbations { Ho (7)), H11m (1), Ho (1), Kim (1)}, we can define
the Zerilli function, Z;,,, as a certain combination of Kj,, and H,;, and their first

derivatives; then, some of the equations give Hy;,, and Hs;, as algebraic combinations of
them, and the other equations, combined, yield the Zerilli equation

A7,
dr?

+ <W2 - VEpOlar) Zlm =0
where

VEpolaroﬂ) _ (1 .

2MN [(I—=1)(1+2) /1  20—=1)(1+2)(P+1+1) 2M
r H 3 (ﬁ+ (6M+r(l—1)(l+2))2)+ 7‘3]’

These potentials behave like the scalar potential discussed before, and the same results
apply. The axial perturbations

lee_th

behave, at infinity and at the horizon, as a combination of ingoing and outgoing waves;
by imposing the boundary conditions of free oscillations, i.e. purely outgoing wave at
infinity and purely ingoing wave at the horizon, the equation has solution for a discrete
set of (complex) values of w. In the same way, the polar perturbations

Zlmeflwt

behave, at infinity and at the horizon, as a combination of ingoing and outgoing waves, and
by imposing the same boundary conditions we find a discrete set of comples frequencies.

These frequencies are the quasi-normal modes of the Schwarzschild BH. Some
remarks on these modes.

e A remarkable property of the QNMs of Schwarzshild spacetime, is that polar and
axial QNMs are identical: they are isospectral. This is due to a deep and highly
non-trivial symmetry property of the perturbation equations, which has been studied
in detail by Chandrasekhar. For Kerr BHs, instead, the perturbations can not be
separated in polar and axial since they have no definite parity.

e Another property, which in this case is a simple consequence of the spherical sym-
metry of the background, is that the perturbation equations depend on [ but not on
m, and thus the QNMs do not depend on the harmonic index m. For Kerr BHs,
instead, the rotation induces a sort of “Zeeman splitting” of the QNM frequences
which depends on m.
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e For each value of [, there is a set of modes, denoted by the integer number n =
0,1,.... The n = 0 mode is the fundamental mode and the easiest to excite in a
physical setup.

e Differently from normal modes in Newtonian physics, the QNMs do not form a com-
plete basis of the perturbation; indeed, when a BH is perturbed, after a transient
the metric perturbation (and then the GW signal) is described with good approxi-
mation by a combination of quasi-normal modes, but at late times it also includes a
power-law tail ~ t=21+3,

e In geometric units the mode frequency has dimensions of inverse length (i.e. inverse
mass), and is proportional to the unique dimensionful scale of the system: the inverse
BH mass. So, for instance, for [ =2, n =0

Mw ~0.3736 — 10.0890 ,

forl =2, n=1 Mw ~ 0.3467 — i0.2739 and so on. So, the larger the mass of the
BH, the smaller the frequency of the mode, and the larger the damping time. In
physical units, for the fundamental [ = 2 mode,

M, M
v~ 12V® kHz 7 = E’).E’)M® x 107°s.
So, for a M = 10M; BH the frequency of the fundamental QNM is ~ 1 kHz and
the damping time is ~ 0.5 ms, while for a supermassive BH like that at the center
of our galaxy, with M ~ 10°M, v ~ 1072 Hz and 7 ~ 50s.

e In general, the BH obtained from a coalescence is rapidly spinning; most of them
have a ~ 0.7M, which what is expected when the spin of the initial BHs are small,
and comes from the orbital angular momentum of the binary, due to angular momen-
tum conservation. So, the QNMs of Schwarzschild spacetime are not appropriate,
we should consider the modes of Kerr, which are more complicate but possible to
compute. The result is a set of functions of a:

(Mwpim)(a) .

e [t turns out that all QNMs of Schwarzschild, and all QNMs of Kerr, are com-
plex number with negative imaginary part. This is the prove of the stability of
the Schwarzschild and Kerr solution: even a single mode with w; > 0 would mean
that there is an exponentially growing solution, and a tiny excitation of this solution
would necessarily explode, but this is not the case, all the modes are exponentially
decreasing.

e Most importantly, the values of the QNMs can be measured from the observed GW
emission, and they are an incredibly powerful probe to test the dynamics of GR, and
of the BH solution. While the multipole moments only depend on the stationary
solution of the equations, the QNMs carry the imprint of the dynamics of the the-
ory, and would then be affected by those modifications of GR which do not affect
stationary solutions.



11

B. Some remarks on BH observation by GW emission

BBH coalescence has been first observed in 2015; today the ground-based interferome-
ters LIGO and Virgo (and very soon Kagra) routinely observe this process.

=0 =
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The gravitational waveform emitted in a BBH coalescences is composed of three stages:
the inspiral, when the two bodies approach each other as they lose energy through GW
emission; the merger, when they merge to form a single BH; and finally the ringdown,
when the distorted BH formed as a result of the merger oscillates in a combination of its
QNMs, until it reaches a stationary state.

These stages contain different information, and they are modeled theoretically using
different approaches.

e For the inspiral, the most appropriate approach to study the motion of the binary, and
for finding the emitted gravitational waveform, is the post-NNewtonian expansion.
For this approach I refer the reader to the review article of Blanchet, arXiv:1310.1528,
or to the book of Poisson and Will, Gravity. The idea is to expand the motion, and
eventually the metric and the gravitational waveform, in powers of (I use physical
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units with ¢ and G)
2 1
T = (9) = —2[GM7TVGW]2/3
c c

where M = my + mo, v is the velocity of the bodies, with masses m; and ms, and
Vaw is the frequency of the emitted GW. The metric is expanded as a perturbation
of flat spacetime, but the perturbation is not simply defined as h,, = g, — Nyt it is
defined as

WY =/ —gg" — "
in this way it can be shown that Einstein’s equation (without approximations) can
be cast in the form
167G

Opht = = |g|T" + terms of higher order in A" .

These equations are solved iteratively, adding at each step higher orders in A*” in
terms of integrals. In this way, one can write at each order the equations of motion
in the form of the Newtonian equations, plus post-Newtonian corrections.

and from that one finds the emitted gravitational waveform:
h(z) = Ae

where the phase (which is the quantity measured with greater precision, as a function
of z, i.e. of the frequency) can be written as a sum over half-integer numbers n:

00
Qb _ E Oénl'n_5/2
n=0

3x5/2 20 /743 11
= 1 — 4= — 16wz 4.
1281 { <336 T3 ") v T

9

Here n = mymy/(my + my)? is the symmetric mass ratio and «,, are the PN
paramters. The first term in the square parenthesis is the Newtonian contribution,
while the others are the post-Newtonian corrections; the term of O(z") is called n-PN
correction, and corresponds to (v/c)** terms; I do not write explicitly the higher-
order PN corrections, which are expressions in terms of very large rational numbers.
Today we know the motion of the binary fully up to 3.5-PN corrections. Note that
this is the waveform in the frequency domain (z is the rescaled frequency at power
2/3), but the inspiral signal is a chirp, in which - like in the sound of a singing bird
- the frequency increases with time (and the amplitude increases as well). So, in the
early inspiral the main contribution to the signal comes from small x’s, and only the
first terms of the expansion are relevant, while as the inspiral proceed, higher and
higher PN terms become relevant.
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By comparing the inspiral part of the waveform with the PN expressions, it is possible
to extract with great precision the masses of the bodies, and also (with smaller
precision) other parameters as their spins, the eccentricity, precession, etc.

The inspiral contains a wealth of information on the BHs and their motion, but it is
not really a strong-field source. Then, the merger contains information complemen-
tary to that of the inspiral: it is in the merger that the non-linearity of Einstein’s
equations becomes important. However, there is no semianalytical approach such
as the PN expansions which can model the merger, which is a truly strong-field,
non-linear phenomenom. It has to be modelled using numerical relativity, i.e.
by solving numerically the full Einstein’s equations using parallel supercomputing.
Technically, this is a very complex problem. FEinstein’s equations have to be for-
mulated as an evolution problem, by choosing a time coordinate; by foliating the
spacetime in family of spacelike surfaces, each corresponding to a different time; by
defining consistent “initial data” in one of these surfaces; by formulating Einstein’s
equations as evolution equations, which, given the metric in one hypersurface, gives
the metric in the next one; and finally, numerically integrating these equations. There
are several references on the subject, see e.g the book of Alcubierre, Introduction to
3 + 1 numerical relativity.

This problem is particularly severe for BHs, because it is highly non-trivial how to
treat the horizon, how to teach to the computer that a singularity is where the man-
ifold itself is not defined, how to choose the gauge such that spurious effects due to
numerical truncation errors do not spoil the validity of the entire simulation. It took
decades to solve this problem, but finally in 2006, with the so-called “breakthrough”,
different groups, using different methods, succeeded at the same time.

Today NR simulations, although numerically costly, are common, and are performed
by different groups. They allow to predict the signal produced by a binary, whatever
are their parameters, and are a fundamental tool for the data analysis of the GW
signals.

Between inspiral and merger there is the region of the late inspiral, in which the pure
PN expansions are not accurate enough; some extensions of the PN expansions have
been developed, such as the phenomenological waveforms and the effective-
one-body waveforms which use sophisticated mathematical tools to extend the
validity of the PN waveforms to late inspiral. They use some of the results of NR
simulations to calibrate some parameters, which allow to describe very accurately
the waveform in the late inspiral, and to some extent also in the merger, and being
semi-analytical are also a fundamental tool for the data analysis for gravitaional
waveforms for BBH coalescences.

Finally, during the ringdown the final BH oscillates in its QNMs. I have already de-
scribed how perturbation theory around a curved background is the most appropriate
approach to study this stage. In the data analysis, the final part of the waveform is
fitted with the main QNMs of the final BHs, finding further information on the BH
parameters, and on the dynamics of the underlying theory.
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