Toy-MC for gain fluctuations simulation in digitization

With inputs from Davide

So far, a constant value of $1 \mathrm{\gamma} / 2 \mathrm{eV}$ deposit energy is used as conversion factor (for LEMON)
\rightarrow we have to describe charges collection and gain fluctuations

Start from the number of primary ionization electrons ($\mathbf{N}_{\text {primary }}$) and consider (in a simple statistical model):

1) The probability that an electron, produced in the drift zone, arrives in the transfer area crossing a channel of the GEM foil (electron transparency);
2) The number of secondary electrons produced in the multiplication in a GEM foil.

Gain \& fluctuations - primary electrons

Unfortunately, our simulations (both G4 and SRIM) do not return the number of primary electrons but only the energy loss
\rightarrow we have to find a walkaround to estimate $N_{\text {primary }}$ and its fluctuations
For the moment focus on the other parts of the problem...
\rightarrow Use the 55 Fe case (good also for exp comparison):

- The mean number of primary electrons in He is
$\overline{N_{\text {primary }}}=5900[\mathrm{eV}] / 42[\mathrm{eV} /$ pair $]=140$
\rightarrow Generate $\mathbf{N}_{\text {primary }}$ according to a Poisson distribution

$$
\begin{aligned}
& \text { Shouldn't we consider a Fano factor (which is } \\
& \text { quite small for He mixtures...)? } \\
& \sigma=\sqrt{F \cdot \overline{\mathrm{~N}_{\text {primary }}}} \rightarrow \sigma / \boldsymbol{\sigma} \sim \mathbf{0 . 0 5} \text { if } \mathbf{F} \sim \mathbf{0 . 2 5}
\end{aligned}
$$

Gain \& fluctuations - electron transparency

From simulations we can assume for each primary electron:

- $\varepsilon \sim 0.5 \div 0.6$
(low drift field, $\varepsilon_{\text {Coll }}$ saturates at 1 and $\varepsilon_{\text {Extr }}$ smoothly increasing)
a Maxwell simulation from Veenhof

$\xlongequal{\text { RMantre }}$
F.Petrucci - 27/07/20

Generate the number of electrons to be considered in the multiplication (n.e.gem)
from a binomial distribution with parameters
$\mathrm{N}_{\text {primary }}$ and $\mathrm{p}=0.6$
Primary electrons
(including GEM transparency)

Gain \& fluctuations - multiplication (I)

the number of secondaries is described by an exponential (leaving the bin at o that is the inefficiency)
a simulation from Pinci?

For each electron to be multiplied (n.e.gem) a number of secondaries is generated according to an exponential distribution with $\mu=\sigma=80$ (assumed GEM gain) and then added to obtain the total number of secondaries

Gain \& fluctuations - multiplication (II)

Only the effect of the
exponential multiplication

$$
\text { on } N_{\text {primary }} \equiv 140
$$

Total number of secondaries

Considering also the Poisson fluctuations on $N_{\text {primary }}$

Considering also the Poisson fluctuations and the binomial fluctuations (transparency) on $N_{\text {primary }}$

Gain fluctuations induced by the other two GEMs foils is too time-consuming but should definitly be negligible (at least in this semplified model)
F.Petrucci-27/07/20

