Advanced X-Ray Light Sources for Frontier Life Science Research

Recent Advances in Life Sciences

Edgar Weckert

Erice International School of Scientific Journalism and Communication Erice, 9-13 May, 2010

Outline

Outline

- Introduction
 - What are X-rays?
 - How to generate X-rays?
 - Modern sources for X-rays
- Applications in life-science
 - Imaging of organism
 - Structure of biomolecules
 - Function of biomolecules
- Outlook
 - Dream of many structural biologist

What are X-rays? Electromagnetic waves

Structure of matter

X-rays

Discovered by Wilhelm Conrad Röntgen in the year 1895 in Würzburg, Germany

Generation of synchrotron radiation

Principle of a ring accelerator

Properties of synchrotron radiation

Wigglers and undulators

Generation of FEL radiation

Properties of FEL radiation

How long is 100 fs??

Synchrotron radiation sources world wide

worldwide 42 operational

13 under constr.

Europe 13 operational

under constr.

APS

LNLS

PETRA III: new high energy 3rd generation source

- rebuild of 1/8 of the 2304m circumference
- refurbishment of 7/8 of the storage ring
- refurbishment of pre-accelerator chain (also used by DORIS III)
- construction of a 300m long new experimental hall
- installation of 80m of damping wigglers
- top up operation mode

key parameters:

- particle energy: 6GeV

- current: 100mA (200mA)

horizontal emittance: 1 nmrad

- No. of undulators: 14 (incl. canted)

- undulator lengths: 2-10(20) m

- no bending magnet beamlines

FLASH overview

SCCS@Spring-8, Japan

European XFEL

3.4km

CH CN DE DK ES FR GB GR HU IT PL RU SE

European XFEL

European XFEL construction sites

Other FEL projects in Europe

Milestones likely not to be up to date

Outline

- Introduction
 - What are X-rays?
 - How to generate X-rays ?
 - Modern sources for X-rays
- Applications in life-science
 - Imaging of organism
 - Structure of biomolecules
 - Function of biomolecules
- Outlook
 - Dream of many structural biologist

Imaging of slightly absorbing objects

Phase contrast imaging: $\xi \sim \lambda r_0/s$

High resolution tomography of rare insects

How does life work? Structure of a cell?

Proteins: lysozyme, different representations

Atoms as small balls

grey: carbon blue: nitrogen red: oxygen yellow: sulfur

Atoms as spacefilling spheres

Schematic representation

Protein structure determination

Ribosome

Examples for recent achievements in structural biology

1. How do muscles work on an atomistic scale

2. How is genetic code translated into proteins

How do muscles work?

How do muscles work?

Small angle X-ray scattering from muscle fibres

• 1970: first SAXS experiments from biological material Rosenbaum, Holmes, Witz, Nature, 230(1971)435

Structure of muscles and how do they work ...

Structure of muscles and how do they work ...

Structure and function of the ribosome ...

Structure and function of the ribosome ...

http://www.weizmann.ac.il/sb/faculty_pages/Yonath/home.html Schluenzen et al., Cell, 102, 615-23 (2000) Harms et al., Cell, 107, 679-88 (2001)

Nobel Price Chemistry 2009.

- Ada Yonath (together with V. Ramakrishnan und T. Steitz)
- Pioneered Ribosome crystallography
- > 1986-2004 Head of Max-Planck group "Ribosomstruktur" at DESY
- Key X-ray experiments at DORIS / BW6

Effect of antibiotics on the ribosome

Schlünzen, ..., Yonath, ... Nature, 413(2001)814

Ribosom D. radiodurans 50S Erythromycin (red)

Outline

- Introduction
 - What are X-rays?
 - How to generate X-rays ?
 - Modern sources for X-rays
- Applications in life-science
 - Imaging of organism
 - Structure of biomolecules
 - Function of biomolecules
- Outlook
 - Dream of many structural biologist

Possible applications of X-ray FELs ... dreams we have ...

1. Making of 'molecular movies'

2. Diffraction from single particles

Time resolved diffraction

Example:

Time resolved investigation of the photo ionization of CO-myoglobin at ID9 (ESRF):

- pump-probe technique
- X-ray crystallography

Variable delay between laser pump pulse and X-ray probe pulse.

32 exposures per image

'pink' Laue technique, range: 0.72-1.24 Å

Schotte et al., Science 300(2003)1944

Time resolved crystallography

XFEL: 1000-10000 times better time resolution than today

Schotte et al., Science 300(2003)1944

Conclusion

- Modern X-ray sources are providing photon beams of unprecedented properties
- A number of new sources are under construction or being commissioned
- Storage ring based X-ray sources did and will contributed significantly to the solution of structural problems in life sciences
- New FEL source will enable totally new insight in structural biology problems:
 - watching molecules in action
 - study of systems far away from equilibrium
 - single particle imaging

