E-health: bridging the gap

Manjit Dosanjh

CERN

Erice, 12 May 2010

Communication

"If you talk to a man in a language he understands, it goes to his head. If you speak to him in his language, it will go to his heart."

Nelson Mandela

Information Communication Technologies (ICTs)

What are they:

Radio, television, internet, telephones, cellular phones, satellites, portable devices, conference/meeting tools, pod-cast, facebook, skype, twitter, blogs,......

What effect are they having:

- producing fundamental changes in all areas
- providing a unique interaction between the user and the subject
- starting to enable a more citizen-centred, personalised information.....

ROLE OF ICTs IN HEALTH

ICTs provide opportunities for individuals, medical professionals and healthcare providers to communicate

ICTs are producing fundamental changes in healthcare and are enabling a more individual-centred information

e-Health: Health enhanced by ICTs

"e-Health" the right information, at the right time, in the right place

- For ubiquitous management of citizens' health
- To assist health professionals
- To integrate advances in health knowledge into clinical practice
- To streamline the citizens' healthcare system and
- To empower the patients to take informed decisions

Examples of e-Health

Products

- Electronic Health Records (HER)
- Digital Medical imaging
- Multidimensional image analysis
- Surgery assisted by computer
- Health smart cards
- Intelligent wearable devices for continuous monitoring, etc.

Systems:

- Internet, Intranet and regional health networks
- Satellite access and specific handsets
- Portable and communicable intelligence devices, etc.

ICTs in health today

The third pillar of the health industry:

- Chemistry: drugs, chemicals (19th Century)
- □ Physics: x-rays, isotopes, imaging (20th Century)
- □ ICTs: knowledge systems for health (21st Century)

Paradigm shift from health systems focused on curing disease in patients by health professionals in health care facilities, to a focus on the citizen-empowering him/her with information to maintain his health everywhere and at any time

5 Steps of eHealth (R. Mayer, Med-Austron)

Step 1 Information

- Estimated ~ 20,000 health websites
- Used by over 100 million people
 - □ 75% of people who have web access
 - Average of 3.3 times per month
- More than consulting doctors
- Second most searched topic

Step 2 Communication - online diabetes diary

Diabetes-diary allows

- □ to document the blood glucose values
- enables the physician to access the data

The patient can

- □ communicate with the physician online
- □ save time and unnecessary office visits.

from: http://www.diabetes-diary.com/

Copyright @2001-2005 DiabLink GmbH & Co. KG

Step 3 Interaction - Telemonitoring

Step 4 Interaction - Electronic health card

□ For example : Austria

- Rollout at end of 2005
- Electronic handling of a complete (treatment) process

Includes:

- On the reverse side = EHIC European Health Insurance Card
- Digital signature

(R. Mayer, Med-Austron)

Constraints

- Access rights defined by the patient
- Two types of cards with identification/authentification tools:
 - > patient card (PC) : no medical information
 - health provider card (HPC)
- Data is stored at source of production : no central repository
- Health record is made up temporarily, through simultaneous presence of PC and HPC
- Confidentiality and security guaranteed

Step 5 Integration

Central data repository

or

Local data repositories + central index

Case record

or

Life long electronic health record

Various combinations are under discussion in many countries

Interoperability is prerequisite for connecting eHealth applications

Situation and Challenges

Hadron Therapy Centres provide an ideal Testbed

- Few facilities at the moment
- Patient referral is necessary both nationally and ouside
- Exchange of best practices, training, protocols for treatment
- Accept, collate, select appropriate information from referring clinics and physicians
- Strong need for ICT for both quantity and quality of data and operation of facility
- All this needs to be easily accessible by various health professionals

Possible Scenario

For Patient referral

Possible data input from referring hospital

- Patient base data
- Medical relevant data
 - Histological data
 - Surgical report
 - Other findings
- CT/MRI/PET-CT/US
- RT plan + applied dose

- RT planning documents
 - Applied dose
 - Sum dose
- Medical report

Available data output Injit Dosanjh, ERICE, 12 May 2010 from Treating Facility

The Web

- Was a response to the needs of a distributed collaborating physics community
- And saved time and effort in fetching information from other places
- □ It made sharing information so much easier

Independent of and removing barriers of space and time

LHC data challenge

Concorde (15 Km)

CD stack with 1 year LHC data! (~ 20 Km)

Mt. Blanc (4.8 Km)

- 40 million collisions per second
- After filtering, 100 collisions of interest per second
- 10¹⁰ collisions recorded each year

~10 Petabytes/year of data

~10 000 times the world annual book production,

~20km CD stack

LHCb

ATLAS

ALICE

The GRID

The aim of the GRID is to give access,

again easily and transparently,

BUT not only to simple information, it allows

- Storing and computing everywhere in the world
- Easy access through the networks
- Security

Allows 24-hour computing via the GRID

The User connects to his "Virtual Laboratory"

Early example of health application on the grid

Mammogrid

A Grid-powered Mammography Database

Context

Protons

- use of protons proposed 1946 by R.Wilson
- first use on patients in 1954 (Berkeley)
- in 2009: >25 proton therapy centres

 Heavy ions
- only 2 clinical centres using carbon ions (Japan) and physics research institutes until 2009/11
- HIT inaugurated in November 2009

Connect centres ...
... and make most of available data!

Disciplines

Data standards and semantics

- Heterogeneity
 - Different disciplines have different view on subject.
 - Different institutions have own measurement procedures and naming conventions
- Semantic Interoperability
 - Same meaning for sender and receiver
- Computer Interoperability

Hadrontherapy Information Sharing Platform (HISP)

Connect:

- □ Users
- Data sources

by

- □ Grid core
- Security
- Integration
- Portals
- Interfaces

Platform Infrastructure

Core services

Security

Interfaces

- Data management
- Metadata registry
- Data mining
- HPC availability
- Encrypted storage
- SLA Negotiation

- Authentication
- Authorization
- Role based access
- Anonymisation
- Single-sign-on
- ProtectionFrameworks

- Standard
- HL7 compliant
- DICOM
- Interoperable
- Transparent to HIS

Manjit Dosanjh, ERICE, 12 May 2010

The challenges of tomorrow...

Usability

For an interface to be a success it must provide

- the right functionality
- at the right place
- at the right time
- and in the right form

from the user's point of view!

"Nurse, get on the internet, go to SURGERY.COM, scroll down and click on the 'Are you totally lost?' icon."