Physics at future colliders: inputs for the European Strategy

Luca Silvestrini INFN, Roma

- Introduction
- Current open questions for future colliders
- A few examples
- Conclusions

INTRODUCTION

• The SM Lagrangian

$$\mathscr{L}_{SM} = \mathscr{L}_{SU(3)\otimes SU(2)\otimes U(1)} + \mathscr{L}_{fermion} + \mathscr{L}_{Higgs} + \mathscr{L}_{Yukawa}$$

reproduces all available exp data thanks to accidental symmetries: B & L conservation, no tree-level FCNC, custodial SU(2). However, it provides no explanation for

- the miracle of (hyper)charges
- the absence of strong CPV
- neutrino masses
- dark matter

It also does not include gravity

INTRODUCTION

• The SM Lagrangian

$$\mathscr{L}_{SM} = \mathscr{L}_{SU(3)\otimes SU(2)\otimes U(1)} + \mathscr{L}_{fermion} + \mathscr{L}_{Higgs} + \mathscr{L}_{Yukawa}$$

reproduces all available exp data thanks to accidental symmetries: B & L conservation, no tree-level FCNC, custodial SU(2). However, it provides no explanation for

- the miracle of (hyper)charges \Rightarrow Grand Unification
- the absence of strong CPV \Rightarrow Peccei-Quinn
- neutrino masses \Rightarrow See-saw, SO(10)
- dark matter

It also does not include gravity

Roma, 21/9/2020

- Luca Silvestrini
- enlarge the SM field content
- break accidental symmetries
- spoil agreement with experiment
- hierarchy problem

FROM THE SM TO THE SMEFT

• The SMEFT Lagrangian:

(super)large Λ

Hierarchy (fine tuning) problem

(super)small Λ

The hierarchy problem

- No known NP model avoids tuning of weak scale and/or accidental symmetry violation (flavour, custodial, B and L). Need:
 - new theoretical ideas
 - experimental progress:
 - direct NP searches: more energy & more luminosity
 - indirect NP searches: better accuracy on accidental symmetries (flavour, EW, Higgs, B and L)

Open questions for future colliders

- Does the Higgs sector coincide with the SM one?
 - additional charged/neutral Higgs bosons
 - elementary or composite?
 - Yukawa couplings & flavour hierarchy
- What stabilizes the weak scale?
 - are there new particles coupled to the Higgs?
 - is there any deviation from the SM in EW and flavour?
- What are the properties of Dark Matter?
 - is it a WIMP?
- Is there any feebly interacting new particle?

Expectations until my retirement (~2035)

Luca Silvestrini

HEPfit

Higgs@FC WG

Sentember 2010

0.10

Scale / coupling [TeV]

Roma, 21/9/2020

Scale / coupling [TeV]

7								
	Comparison	30(90)	14(20)	10(10)	6(4)	$3 \text{ TeV} (1 \text{ ab}^{-1})$	\sqrt{s} (lumi.)	μ collider @
(C TC)	0.1% [41]	0.023%	0.050%	0.073%	0.12%	0.26%	$WWH \ (\Delta \kappa_W)$	
	(68% C.L.)	16	11	9.0	7.0	4.7	Λ/\sqrt{c}_i (TeV)	
	0.13% [17]	0.21%	0.46%	0.61%	0.89%	1.4%	$ZZH \ (\Delta \kappa_Z)$	
(CEPC)	(95% C.L.)	5.3	3.6	3.2	2.6	2.1	Λ/\sqrt{c}_i (TeV)	
	5% [36]	0.20%	0.41%	0.62%	1.3%	5.3%	$WWHH \ (\Delta \kappa_{W_2})$	
	(68% C.L.)	5.5	3.8	3.1	2.1	1.1	Λ/\sqrt{c}_i (TeV)	
(FCC-hh)	5% [22, 23]	2.0%	3.9%	5.6%	10%	25%	$HHH (\Delta \kappa_3)$	
	(68% C.L.)	1.7	1.2	1.0	0.77	0.49	Λ/\sqrt{c}_i (TeV)	
⁻ Han et al '20]		1		1			

and fine-tuning parameter

What awaits younger generations? 2) direct searches

All Colliders: Top squark projections (R-parity conserving SUSY, prompt searches)

(*) indicates projection of existing experimental se (**) extrapolated from FCC-hh prospects

11

ILC 500: discovery in all scenarios up to kinematic limit $\sqrt{s}/2$

$$\varepsilon$$
High-scale mediationLow-scale mediationstop $5 \times 10^{-5} \left(\frac{10 \text{ TeV}}{m_{\tilde{t}}}\right)^2$ $2 \times 10^{-3} \left(\frac{10 \text{ TeV}}{m_{\tilde{t}}}\right)^2$ gluino $7 \times 10^{-6} \left(\frac{17 \text{ TeV}}{m_{\tilde{g}}}\right)^2$ $6 \times 10^{-3} \left(\frac{17 \text{ TeV}}{m_{\tilde{g}}}\right)^2$

1

Luca Silvestrini

12

European Stra

What awaits younger generations? 2) direct searches

What awaits younger generations? 3) DM @ colliders

14

What awaits younger generations? 4) Flavour

- With suitable detectors, broad range of opportunities at both lepton and hadron colliders
- Detailed studies needed to assess reach and detector requirements
- Flavour will certainly continue playing a central role in indirect NP searches

CONCLUSIONS

- Physics expectations for future colliders:
 - probe the nature of the Higgs boson up to scales of 10-20 TeV, i.e. a ‰ degree of compositeness
 - probe new heavy particles relevant for stabilizing the EW scale up to 10-20 TeV
 - fully probe the thermal DM window for EW doublets and triplets
 - push the heavy scale probed by flavour beyond the EeV