

LEMMA TB

Context

- Following the recent **European Strategy update**, a Muon Collider Collaboration has been established
 - Collaboration meeting on July 3: <u>https://indico.cern.ch/event/930508/</u>
- Among the two proposed production schemes for a Muon Collider, the **MAP** scheme is considered more advanced (baseline)
- However, the **LEMMA** scheme is considered an interesting alternative, to be developed in parallel
- Need to develop the concept of both schemes towards a **demonstrator** has been stressed
 - See D. Schulte's accelerator talk @ said meeting: https://indico.cern.ch/event/930508/contributions/3920338/attachments/2068494/3472140/MC_Facility_final.pdf

LEMMA TB: Motivation

- Experimentally measure the key parameters of the LEMMA approach
 - Emittance of emerging μ beam
 - $\mu^+\mu^-$ production **cross-section at threshold**
 - properties of **spent** *e*⁺ **beam** (transverse emittance and energy spectrum)
 - Effect of the target material/thickness
- Although these are theoretically known and can be obtained from simulations, precise measurements do not exist at the μ⁺μ⁻ production threshold
 - GEANT does not include e.g. near-threshold Coulomb enhancements, and has not been experimentally tested in this regime

Past TBs

• 1 week in 2017 at H4, **1+1 weeks in 2018 at H2** (North Area)

Layout of the experimental setup:

August 2018

Experience and Results

- Low-budget: mostly re-use available detectors and DAQ
- Lot of experience gained, decent result published (JINST 15 P01036)
- However, severe limitations in the setup did not allow pursuing high precision measurements
 - Resolution of the available tracking system too modest
 - Too large trigger/DAQ dead time
 - A single week of data taking barely sufficient to set up detectors and trigger properly

The challenge

- "intrinsic" emittance of emerging μ's is tiny, and buried deep into the emittance of the incoming e⁺beam
 - In order to get a meaningful result, the measured muon kinematics must be corrected by that of the the incoming positron:

$$x = x(\mu) - x(e^+)$$
$$x' = x'(\mu) - x'(e^+)$$

• Requires extremely good tracking resolution both before and after the target

with reasonably achievable tracking system

The challenge (cont.)

- Cross section measurement requires:
 - an efficient trigger and DAQ system with small dead-time
 - ability to assess the trigger efficiency
 - well controlled acceptance
 - Normalization to either incoming e+ rate on target, or other physical processes (Bhabha, γγ)

• >1 week is essential to set up, calibrate and align detectors, set up and validate the trigger, and take data

More like a small experiment than a typical test beam

Future TBs

- Experiment being redesigned accordingly
- Request for 3-weeks beam time in H4 submitted to SPSC
 - http://cds.cern.ch/record/2712394

CERN-SPSC-2020-004

LEMMA-TB: an experiment to measure the production of a low emittance muon beam

N. Amapane^{a,b}, M. Antonelli^e, F. Anulli^d, N. Bacchetta^h, N. Bartosik^b, M. Bauce^d, A. Bertolin^h, M. Bianco^m, C. Biino^b, O. R. Blanco-Garcia^e, M. Boscolo^e, A. Braghieri^q, A. Cappati^{a,b}, F. Casaburo^{l,d}, M. Casarsaⁱ, G. Cavoto^{l,d}, N.
Charitonidis^{*m}, A. Colaleo^p, F. Collamati^d, G. Cotto^{a,b}, D.Creanza^p, C. Curatolo^h, N. Deelen^t, F. Gonella^h, S. Hoh^{n,h}, M. Iafrati^e, F. Iacoangeli^d, B. Kiani^b, D. Lucchesi^{n,h}, V. Mascagna^{e,f}, S. Mersi^m, A. Paccagnella^{n,h}, N. Pastrone^b, J.
Pazzini^{n,h}, M. Pelliccioni^b, B. Ponzio^e, M. Prest^{e,f}, C. Riccardi^{q,r}, M. Ricci^e, R.
Rossin^{n,h}, M. Rotondo^e, P. Salvini^q, O. Sans Planell^{a,b}, L. Sestini^h, L. Silvestris^p, A. Triossi^o, I. Vai^{q,s}, E. Vallazza^f, R.Venditti^p, S. Ventura^h, P. Verwilligen^p, P. Vitulo^{q,r}, and M. Zanetti.^{n,h}

Proposed layout

- Fast, high-resolution pixel telescopes (CMS modules) before and after the target
- Fast GEM detectors from CMS before and after the magnet
- Combination of several calorimeters
- 4+2 Muon chambers (triggerless readout); ready
- Improved (integrated, low dead time) DAQ system
- Improved trigger system

Pixels

- 12 new modules (from CMS upgrades) being produced:
 - 20 kE total, need to grant planned SJ to PD (10 kE)
- PD will take care of mechanical supports
- Expertise and technical support from the CHROMIE community
 - We'll borrow all read-out and powering/control electronics
- Need to develop an appropriate trigger system (TTC based)

GEMs

- 2 Dedicated Hi-res 10x10 triple-GEM
 - X-Y, 260 µm pitch (75 µm resol.)
- Standard CMS GE2/1 "M1" and "M2" modules in muon arms
 - Trapezoidal, 364-593 µm resol.
- All read out by CMS Phase 2 DAQ

969

Calorimeters

- Calorimeters offer a window on **Bhabha** and γγ processes, with several potentially interesting applications
- In 2018, we had lead glass (OPAL) + Cherenkov (crysBeam Smart Absorbers) on muon arms
 - Used for studies of μ/e ratios on muon arms
- More performing calorimeters would allow much more
 - Tag Bhabha events (with calorimeters on muon arms)
 - Detect $e^+e^- \rightarrow \gamma\gamma$ (with additional central calorimeter)
 - Signature: 45 GeV collinear photon
 - These well known processes can be used to **provide normalization for** *x*-section measurement...
 - Challenges: properly define acceptance + background from radiative bhabha
 - Still at the level of general ideas; need to be developed from scratch

Trigger

- In principle based on a "simple" set of scintillators
 - In front of target to tag incoming positrons
 - Should precisely **define acceptance of target**
 - Rate: expecting $10^7 e^+ per 4.8 s spill$
 - (if needed) **on muon arms** (and possibly after iron absorbers)
 - Tag bhabha and $\mu^+\mu^-$
 - Control of acceptance and efficiency is critical
- Actual design depends on what will be feasible with DAQ

What needs to be done

- A lot of work ahead!
 - Define the proper configuration and positioning of the tracking detectors
 - Complete detectors, mechanic, readout
 - DAQ and trigger
 - Integration of detector systems; possibly including integration tests
 - Reconstruction software
 - Simulation studies
 - Develop analysis strategy e.g. techniques and feasibility for relative normalization of xsection measurements, etc.
- Where we (TO) can contribute:
 - **miniDT** integration, operation, reconstruction
 - **Trigger system** concept (and construction?)
 - Simulation, experiment design, definition of analysis strategy

• ...