

Resolution improvement in circular intensity differential scattering scanning microscopy integrated with two photon fluorescence microscopy using a phasor plot approach

Ali Mohebi – 1st year PhD student Email: ali.mohebi@iit.it Nanoscopy and Nikon Centre@IIT

Outline

□ Label-free microscopy

- □ Circular intensity dichroism scattering (CIDS)
- **Two photon microscopy**
- □ Integration of the modalities
- D Phasor approach for a better interpretation of the sample image

Conclusion

ISTITUTO ITALIANO DI TECNOLOGIA OPTICAL NANOSCOPY

Light matter interaction: label-free characterization of a sample

Circular Dichroism (& CIDS) microscopy: temporal modulation states

Vol. 1, No. 3, 15 Nov 2018, OSA CONTINUUM 1068

PhotoElastic Modulator (PEM) Fast modulation of the polarization states

- ✓ 50 kHz & 100 kHz modulations Circular & Linear dichroism
- ✓ Tunable resolution: 10X, 40X, 60X, 100X objectives
- ✓ Multimodality with **epi-fluorescence**
- ✓ Far from the absorption band: CIDS Sensitivity to λ/10 λ/20
- Sensitivity to study anisotropy for biopolymers organization
 e.g. Levels of DNA Packing

Our CIDS setup:

Characterization of Linear Polarizer and Half Wave-Plate using oscilloscope

rotation from 0° to 180° with the steps of 10 degrees

Experimental validation

Starch granules

10x zoom 40X/0.6 NA dry Objective

Cellulose

10x zoom 40X/0.6 NA dry Objective

Nuclear organization under polarized illumination

Isolated nuclei (hek cells), 100X/1.4NA oil Objective

The phasor plot analysis for fluorescence data

TECHNICAL NOTE

FLIM Analysis using the Phasor Plots

LP1

Illuminator

ISTITUTO ITALIANO DI TECNOLOGIA OPTICAL NANOSCOPY

The phasor plot analysis for CIDS data

Phasor approach of the simulated output intensity of light in our CIDS setup

Sample

$$I(t) = I_{DC} + I_{\omega} \cdot \cos(\omega t)$$

Polarized

Beam

Splitter

• **Example:** Quarter Wave-Plate simulation

PEM

 \succ The points along vertical axes are corresponding to ω and the horizontal ones are linked to 2ω

Conclusion

- Higher spatial resolution and quantification of highly packed chiral molecules
- □ Time resolved microscopy based on ultra-short laser pulses
- □ Molecular view of the sample using Phasor approach
- □ Fast interpretation of huge image data in terms of Birefringence, Polarizability, etc..
- □ Platform for Multimodal Microscopy Imaging
- Multi Messenger Microscopy to unraveling dark side of knowledge on sample

Prof. A. Diaspro

Dr. P. Bianchini

Thank you for your attention

Dr. A. Le Gratiet

Dr. R. Ranjan

R. Marongiu

F. Callegari

PhD Students