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Collagen micro-architecture investigation in
tumor sections by means of second
harmonic generation signal multiphasor
analysis coupled with non-supervised
machine learning techniques
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Collagen role in diseased tissues

AIM

Retrieving and exploiting features
able to describe the collagen fibrils
microstructure to separate tumor
from healthy regions into the tissue.
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COLLAGEN

It IS characterized by non
centrosymmetric microscopic
structure.

The collagen micro-architecture is
different depending on tissue and in
presence of pathologies (aging,
fibrosis, tumor growth)

Collagen can be exploited as an early
diagnostic marker
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Polarization Dependent Second Harmonic Generation (P-SHG)

SHG is a non linear coherent optical
process, label-free signal, sensitive
(e molecular symmetry and
polarization.
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Williams, R. et al. Biophys. J. 88, 1377-1386 (2005)

Model:

I(@C):k{sinz[Z(H”']+[S|n (6r -6, )+ pos?(6r - 0. |

LASER
eL FIBRIL
f

Mean fibril orientation

Mean fibril internal disorder

Fitting procedures are difficult and
slow.




‘Microscopic Multiparametric Analysis by Phasor projection of
Polarization dependent SHG (MMAPPS )

120 240
6, [deg]

Radaelli et al. Sc.Rep. 7, 17468, 2017
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Pixel-by-pixel retrieval of features

able to describe the collagen micro-
structure, without fitting procedures.
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‘Microscopic Multiparametric Analysis by Phasor projection of
Polarization dependent SHG (MMAPPS )

120 240
6, [deg]

Radaelli et al. Sc.Rep. 7, 17468, 2017

360

Pixel-by-pixel retrieval of features
able to describe the collagen micro-
structure, without fitting procedures.
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Isie Map Tumor section analysis by JMAPPS  6r-values Map
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Isie Map Tumor section analysis by JMAPPS  y-values Map
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Clustering Procedure

Assignment phase Aggregation phase

ROIl-based procedure, which
exploits both 6rF and vy
values.
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Results
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Accuracy (%) True True

Xi = # elements of Negative Positive

the i-cluster Colon carcinoma 83.0+4.5 918 4.4

Xk = # total Breast carcinoma 87.5+3.9 91.0 +- 6.0
clustered elements

Scodellaro et al. Front. Oncol. 9:527, 2019
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Perspectives Our team
Fast microstructural analyses to
assist the histo-pathological
evaluation.

In-situ diagnosis of pathologies and
diseases.

Cluster-based machine learning

algorithms with diagnostic capability Biophysics group @UniMiB
of tumors. G.Chirico, M.Collini, L.D’Alfonso, L.Sironi,
M.Bouzin, M.Marini, R.Scodellaro, A.Zeynali

Application to 3D samples. Immunology group @UniMiB
F.Granucci, F.Mingozzi




