

POLITECNICO MILANO 1863

TMek: a lab-on-chip diagnostic test for Malaria disease

Francesca Milesi PhD student in Physics (XXXIII° Cycle) mail: francesca.milesi@polimi.it

Disease development

[1] Hill et al., *"Vaccines against malaria"*, Philosophical transactions of the Royal Society, 2011.
[2] P.N. Simao, *"Exploring impedance spectroscopy as a mean of malaria diagnostic"*, PhD thesis, IST, 2014.

Idea of the TMek project

Need of a **compact**, **low-cost** and **easy to use** diagnostic system, which allows a **rapid** detection, with the same **sensitivity** of the Gold Standard

Magnetophoretic capture of particles in fluid

Resultant force acting on the particle:

$$F_{magnetic} + F_{buoyancy} - F_{gravity} - F_{drag}$$

$$F_{magnetic} = \frac{\mu_0}{2} V p \Delta \chi \nabla (H(x))^2$$

 \succ 0, 01 \cdot 10⁻⁶ for Healthy Red Blood Cells

- ➤ +1, 8 · 10⁻⁶ for Infected Red Blood Cells (schizont stage)
- > +3,9 · 10⁻⁶ for Treated Red Blood Cells
- > +320 \cdot 10⁻⁶ for Hemozoin Crystals

$$\nabla (H(x))^2 \text{ minimum}$$
1, 56 · 10¹⁷ $\frac{A}{m^3}$
8, 6 · 10¹⁴ $\frac{A}{m^3}$
4 · 10¹⁴ $\frac{A}{m^3}$
2, 26 · 10¹³ $\frac{A}{m^3}$

5

Field gradient generation

t-RBCs capture dynamics: simulations and real signals

7 Francesca Milesi

POLITECNICO MILANO 1863

ProtoC: setup suitable for validation

Easy sample preparation: Prick sampling + dilution

Floating RBC

Sample loading on a cartridge with the microchip

Cartridge insertion in the reader

Comparative performances of TMek and

Result	$\parallel {f TMek}$ (Venous)	RDT	$\parallel {f TMek}$ (Capillary)
True positive (n)	46	45	8
False positive (n)	10	5	0
False negative (n)	0	1	0
True negative (n)	19	24	2
Sensitivity (% [95% CI])	100 (90.3-100)	97.8 (87-99.8)	100.0 (63.0 - 100.0)
Specificity (% [95% CI])	65.5(45.5-81.4)	82.7 (63.5-93.4)	100.0 (15.8 - 100.0)
Positive predictive value (% $[95\% \text{ CI}]$)	82.1 (69.1-90)	90(77.4-96.2)	100
Negative predictive value ($\% [95\% \text{ CI}]$)	$\parallel 100 \; (79-100)$	96(77.6-99.7)	100

TMek

RDT Bioline

POLITECNICO MILANO 1863

Thank you for your attention