

Istituto Nazionale di Fisica Nucleare

Calibration and performances of the full scale Δ E-TOF system prototype of the FOOT experiment

<u>R. Zarrella</u>, A. C. Kraan, N. Belcari, P. Carra, E. Ciarrocchi, M. De Simoni, A. Del Guerra, M. Fischetti, M. Francesconi, G. Franciosini, L. Galli, E. Gioscio, M. Marafini, R. Mirabelli, A. Moggi, M. Morrocchi, V. Patera, M. Pullia, V. Rosso, A. Sarti, A. Sciubba, G. Sportelli, M. Toppi, G. Traini, M. G. Bisogni

Introduction

FOOT (FragmentatiOn Of Target) \rightarrow applied nuclear physics experiment relevant in:

Hadron therapy

- Cancer treatment with
 - Favorable depth-do
 - UUAI O Nuclear interactions with tissue → **fragments**
- Radiobiology request: more accurate Treatment Planning Systems (TPS)
- p, ${}^{12}C({}^{4}He, {}^{16}O)$ beams
- Energy up to 250 MeV (p) or 400 MeV/u (^{12}C)

Radioprotection in space

- Knowledge of fragmentation processes needed for spacecraft shielding in long term, far from Earth missions
- p, He, Li, C, O beams
- Energies up to 800 MeV/u

Introduction: nuclear fragmentation

Main goal of FOOT \rightarrow	Identify the nuclear fragments produced inside the body during treatment and measure their production cross section		
initial state	reaction	final state	Ion mostar
projectile target		Y residual projectile	¹⁵ O, ¹⁵ N, ¹⁴ N, ¹³ C, ¹² C, ¹¹ C, ¹⁰ B, ⁶ Li, ⁴ He, ³ He, ³ H, ² H,

Nuclear fragments contribute to dose mostly outside the tumor

- Many types of fragments —
- Energies up to tens of MeV
- Damage to healthy tissue
- RBE variability

New generation of biologically-driven TPS (BioTPS) including nuclear processes

The FOOT experiment

The ΔE -TOF system

- Characterization of nuclear fragments \rightarrow measures:
 - Energy loss ΔE

→ Time-Of-Flight $\rightarrow \beta$

Charge
$$Z = Z (\Delta E, \beta)$$

- Two plastic scintillator detectors:
 - Start Counter \rightarrow 250 µm thick foil
 - \rightarrow provides start time
 - → TOF-Wall \rightarrow 2 orthogonal layers of 20 bars (44x2x0.3 cm³)
 - \rightarrow provides stop time and energy loss
 - → Readout with SiPMs and fast digitizers

FOOT requirements:

•
$$\sigma(\Delta E)/\Delta E \sim 4-5\% \rightarrow \sigma(Z)/Z \sim 2-6\%$$

• σ(TOF) < 100 ps

Beam test at CNAO

First test of the full-scale Δ E-TOF prototype at the CNAO facility (Pavia, March 2019):

- Beams: \rightarrow Protons at 60 MeV
 - \rightarrow ^{12}C ions at 115, 260 and 400 MeV/u
- Calibration through Monte Carlo simulations:
 - $\Delta E \rightarrow Birks' model$
 - TOF \rightarrow matching with MC values

Beam test at CNAO

Beam test at GSI

First test of the global DAQ at the GSI facility (Darmstadt, April 2019):

- Δ E-TOF with other detectors
- ¹⁶O beam at 400 MeV/u

 $\sigma(\Delta E)/\Delta E = 5.0\%$ $\sigma(TOF) = 84 \text{ ps}$ $\sigma(Z) = 2.8\%$

Beam test at GSI: fragmentation

First fragmentation acquisition \rightarrow 400 MeV/u ¹⁶O ions on a 5mm graphite target

Conclusions

We studied the capabilities of the current Δ E-TOF system of FOOT

- ΔE and TOF calibration procedures developed and validated with MC simulations
- Good ΔE (4-5.5%) and TOF (50-75 ps) resolution
- Good overall Z resolution (2.5-6.2%)
- Z identification procedure applied to fragmentation data
- Still much work can be done to optimize the performances
- Important data takings scheduled for the near future:
 - → CNAO → December 2020
 - → HIT (Heidelberg, Germany) \rightarrow early 2021

THANK YOU FOR YOUR ATTENTION