

SICURA

Development of a portable and integrated low cost probe for applications in radioprotection and anti-terrorism

CONTENTS OF THIS CONTRIBUTION

- ✤ What, Why and Where
- Design
 - ✤ Detectors
 - ✤ Electronics
 - Mechanical assembly
- ✤ First results
 - ✤ Detectors characterization
- ✤ Simulations
 - ✤ MCNP6

- Multi-detector radiation probe for radiation protection
 - ✤ Radiological safety
- ✤ Radioactive meterial traficking fight
 - ✤ Easy-to-use
 - ✤ Low cost

- National Labs of
 Frascati, Rome (Italy)
 Funded by the Lazio
 - region

Provide border
 police with a tool
 able to detect
 radioactive surces
 emitting gammas
 and/or neutrons

Probe design

Multi-detector probe:

- ✤ Gamma detectors:
 - ✤ Alarm detector
 - Isotope identification
- ✤ Neutron detector:
 - ✤ ³He
- ✤ Dedicated electronics
- ✤ User interface monitor
- ✤ One hand and telescopic
- All the mechanical structure is 3D printed

CsI(TI) CdZnTe -> CZT

Gamma Detectors

Alert Stage

High detection efficiency

Low sensitivity to background

Identification

High resolving power

Large sensitive volume

- Non hygroscopic and insensitive to temperature variations
- Portable
- Low cost
- Compliant to International Standards

Analog Electronics

1. MCA (2 ch) with AMPLIFIER & SHAPER

2. SCA (1 ch) with PREAMPLIFIER & SHAPER

AMPLIFIER / SHAPER			
Input:	STEP, TAIL, DIFFERENTIAL PULSE		
Shaping:	Active Semi-Gaussian Shaping		
Gain:	Coarse and Fine Gain		
Output:	Unipolar or Bipolar		

MCA

Channels: 2048 ch. LLT/ULT: Settable Memory: 32 bit / ch Conv. T: 8 us uController: 8-bit microcontroller, 29.5 MHz

MCNP6 Simulation

CZT

Isotropical gamma source

due to the pandemic we were unable to take measurements with the 3He

Spectrum readout and online analysys :

Arduino MEGA

DFRobot 0258 RS232 shield

Adafruit AirLift WiFi shield with integrated microSD

- RS232 Comunication with the Detectors Readout Electronics (MAB)
- Data sent to a private webpage via WiFi protocol
- Main analysis tool developed to operate on the client hardware (html, php, java on any mobile, tablet, etc)
- Data and codes stored on the integrated microSD
- No need of licensed softwares

Low cost and power consumption

MCNP6: 133Ba – CsI(Tl)

E [keV]	Yield (%)
383,85	8,94
356,02	62,05
302,85	18,33
276,40	7,16

MCNP6: 133Ba - CZT

E [keV]	Yield (%)	
383,85	8,94	
356,02	62,05	
302,85	18,33	
276,40	7,16	

GEB: gaussian energy broadening

$FWHM(E[MeV]) = p0 + p1 \cdot \sqrt{E + p2 \cdot E^2}$

1	р0	1.99711e-03	1.79430e-03	4.26650e-07	-2.28950er02	 Image: A set of the set of the
2	p1	1.37732e-02	4.50634e-03	9.00942e-07	-1.26205 02	
з	p2	-3.99055e-01	2.32545e-01	1.07501e-04	-2.28 05	Λ Λ
						77
						/ /

p0		-0.00400168	+/-	0.00439372
p1		0.0815424	+/-	0.0111387
p2	=	-0.0329177	+/-	0.155531

Conclusions

- Optimal compatibility between data and simulations
- High sensibility for γ , χ (tens eV -> MeV) (CZT + CsI(TI)
- High sensibility for thermal neutrons (0,025 eV)
- Low cost
- Easy to use
- in the next few weeks we will perhaps be able to carry out the neutron measurements and complete the assembly of the probe

Thanks for your attention!!

MCNP6: 137Cs - CZT

MCNP6: 152Eu – CsI(Tl)

MCNP6: 60Co - CsI(TI)

