

Milan, Italy

Design and performance of the Calorimeter for the FOOT experiment

Lorenzo Scavarda

(INFN Torino, Italy)

FOOT: Purpose

Measurement of the cross section of secondary fragments relevant for

Hadron therapy treatments: 1

FOOT: Design & Detectors

Principle of the FOOT Calorimeter

Calorimeter Arrangment

Calorimeter Design

PHOTODETECTOR & READOUT BOARD

SiPM arrays with 15 μ m size of microcells

SiPM arrays + board

•••••

MODULE MECHANICS

WRAPPING

DIGITIZER

dynamic range: 1V frequency: 1 GS/s

Calorimeter Performances

L. Scavarda

106° SIF

Temperature monitoring

SiPMs are temperature fluctuations sensitive

Is a cooling system necessary?

L. Scavarda

 106° SIF

Temperature monitoring

Interpolating the slope at T_1 and T_2 :

$$m_0 = m_1 + \left(\frac{m_2 - m_1}{T_2 - T_1}\right) \cdot (T_0 + T_1)$$
$$Q_0' = Q_0 + m_0 \cdot (T_1 - T_0)$$

In order to prove the validity of the model: sum of the charge distributions at different temperatures

Where:

- Q₀: charge must be corrected
- To: temperature at which Qo has been taken
- mo: actual angular coefficient to correct Qo
- m1 and m2: the angular coefficients respectively at T1 and T2

Energy Resolution < 2% after T correction

9

Light collection vs position

L. Scavarda

Conclusions & Next Steps

Calorimeter design

The results of beam tests at CNAO were crucial in making the calorimeter design choices:

- crystal size
- wrapping ۲
- photodetector type and configuration
- readout parameters
- temperature variation compensation
- DAO •

In the next future:

- test beam at Heidelberg Ion-Beam Therapy Center (HIT) in order to measure the crystal response function with different ions (H, He, C, O)
- Mechanics •

Traverse crystals

- Study the light absorption along the path of the crystal
- This contribution is not negligible even if it seems constant between different particles/energies
- It will have to be taken into account for the future data taking and some corrections will have to be applied