

Fondazione Policlinico Universitario A. Gemelli Università Cattolica del Sacro Cuore

Microscopy pixel classification of intracellular sites of triglycerides and cholesteryl esters formation and storage through a machinelearning assisted polarity-driven segmentation

<u>Giada Bianchetti^{1,2}, F. Di Giacinto^{1,2}, M. De Spirito^{1,2}, G. Maulucci^{1,2}</u>

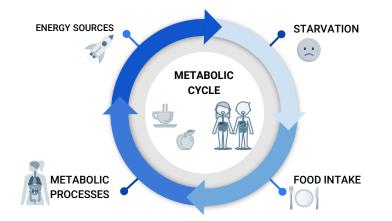
¹Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Roma ²Fondazione Policlinico Universitario "A. Gemelli", IRCSS, Roma

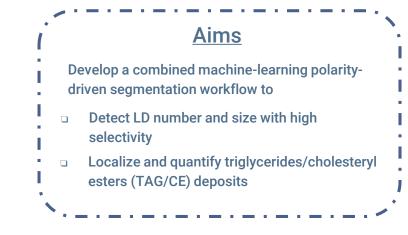
giada.bianchetti@unicatt.it

106° Congresso Nazionale - Società Italiana di Fisica - 14-18 Settembre 2020

Introduction

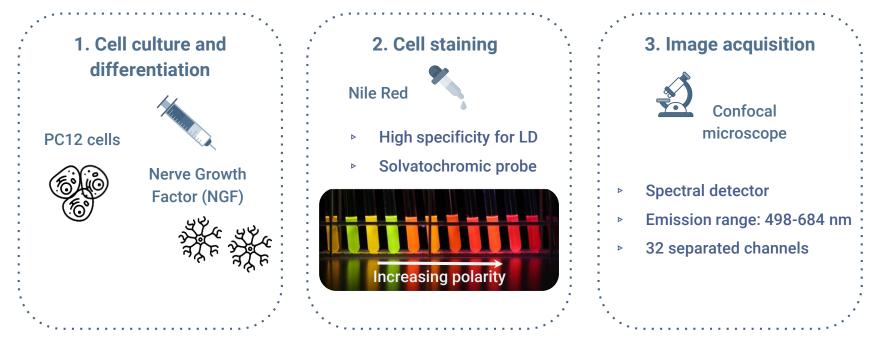
Background:


- * Lipid pathway consists of a complex network of metabolic reactions
- Impairment in metabolic cycle can promote neurodegeneration
- Non-polar (NP) lipids can accumulate in organelles other than lipid droplets (LD)
- * Mechanisms of LD biogenesis are unclear

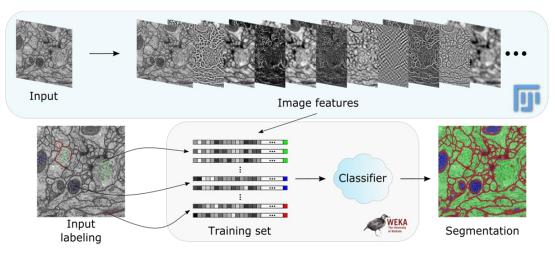


Open problem

Individuation and localization of LD formation sites


 \Rightarrow

Materials and methods (I)

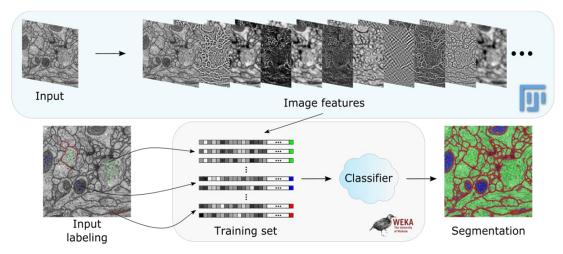

Sample preparation and image acquisition

Materials and methods (II)

Trainable Weka Segmentation (TWS)

- Based on pixel classification
- 1. Image features are extracted from an input image
- 2. A set of pixel samples is defined and represented as feature vectors
- 3. A WEKA learning scheme is trained on those samples
- 4. Finally it is applied to classify the remaining image data

Bioinformatics, Volume 33, Issue 15, 01 August 2017, Pages 2424-2426, https://doi.org/10.1093/bioinformatics/btx180

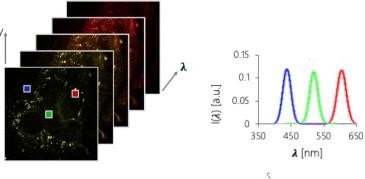


Materials and methods (II)

Trainable Weka Segmentation (TWS)

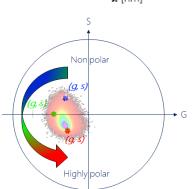
✤ Based on pixel classification

- ***** Two classes: LD and background
- Probability value: 90%



Bioinformatics, Volume 33, Issue 15, 01 August 2017, Pages 2424–2426, https://doi.org/10.1093/bioinformatics/btx180

Materials and methods (III)

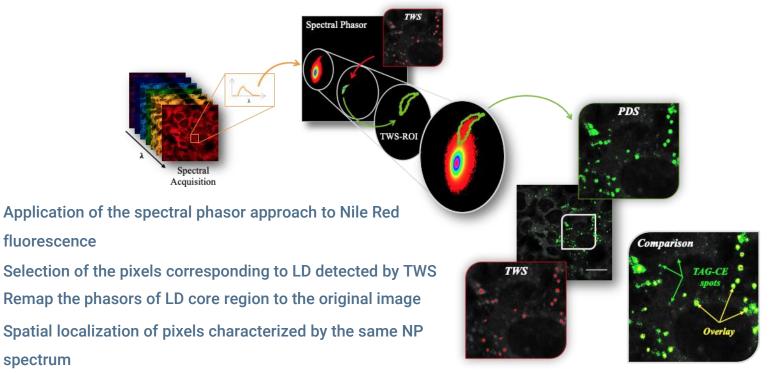

<u>Spectral phasors – Polarity-driven Segmentation (PDS)</u>

- Based on the Fourier representation of spectral properties
- Emission spectrum converted into a phasor, made up of two numbers: g and s
- ✤ g and s are the coordinates in the phasor plot
- Remap regions of the phasor plot to the original fluorescence image
- Segmentation based on pixels with similar spectral properties

$$g = rac{\sum_{\lambda} I(\lambda) \cos(2\pi n \lambda/L)}{\sum_{\lambda} I(\lambda)}$$

$$s = rac{\sum_\lambda I(\lambda) \sin(2\pi n\lambda/L)}{\sum_\lambda I(\lambda)}$$

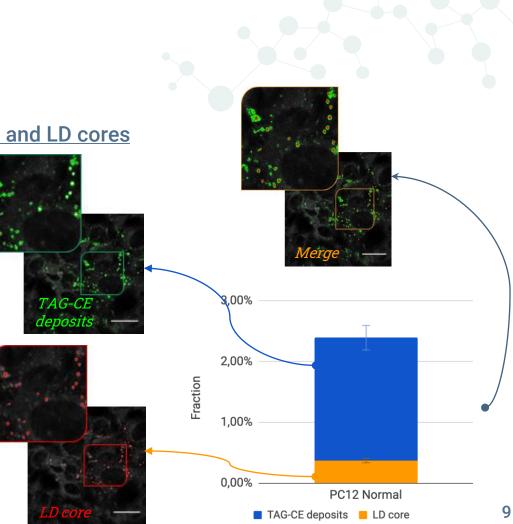
Results (I)


1.

2.

3.

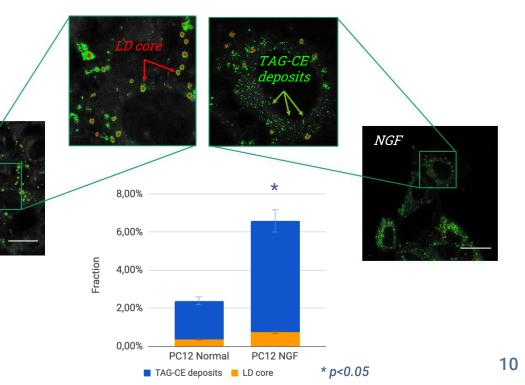
4.


Detection of intracellular LD and other non-polar deposits

Results (II)

Discrimination of TAG/CE deposits and LD cores

- 1. The combination of TWS and PDS allows to distinguish LD core from other NP deposits
- 2. Definition of a Segmentation Quality Factor, *Q**
- 3. NP spots evaluated as the difference between PDS and TWS*
- 4. Quantification of LD cores and TAG/CE deposits in PC12 cells



Results (III)

Effects of NGF treatment on PC12 lipid metabolism

Normal

- Different spatial distribution of NP lipids in undifferentiated and NGF-treated cells
- Treatment with NGF
 induces an increase of both
 TAG/CE deposits and LD
- Enhancement of the lipid turnover to support the reorganization of cells during differentiation

Conclusions, limits and future perspectives

- Improvement in the isolation of LD core through the application of a machine learningbased tool
- Ability to monitor in real-time the overall process of the TAG-CE turnover
- Validation of the method by testing changes in the level of activation of biosynthetic pathways in response to neuronal differentiation
 - Requirement of a spectral detector
 - Staining protocol
 - Clinical application as a powerful personalized medicine tool to follow the progressive accumulation of NP lipids

References

- Bianchetti et al. (2019). *Machine-learning assisted confocal imaging of intracellular sites of triglycerides* and cholesteryl esters formation and storage. Analytica Chimica Acta
- Maulucci et al. (2008). *High-resolution imaging of redox signaling in live cells through an oxidation*sensitive yellow fluorescent protein. Science Signaling

Metabolic Functional Imaging

- Maulucci et al. (2009). Investigation of the spatial distribution of glutathione redox-balance in live cells by using fluorescence ratio imaging microscopy. Biosensors and Bioelectronics
- Maulucci et al. (2015). Quantitative analysis of autophagic flux by confocal pH imaging of autophagic intermediates. Autophagy

Spectral Phasors

- Maulucci et al. (2018). Real time quantitative analysis of lipid storage and lipolysis pathways by confocal spectral imaging of intracellular micropolarity. BBA Molecular and Cell Biology of Lipids
- Di Giacinto et al. (2018). Quantitative imaging of membrane micropolarity in living cells and tissues by spectral phasors analysis. MethodsX

Thanks!

Metabolic Functional Imaging Group Department of Neuroscience - Section of Biophysics Università Cattolica del Sacro Cuore

Prof. Giuseppe Maulucci

Giada Bianchetti

Prof. Marco De Spirito

Flavio Di Giacinto

DO YOU HAVE ANY QUESTIONS?

giada.bianchetti@unicatt.it

Fondazione Policlinico Universitario A. Gemelli Università Cattolica del Sacro Cuore

