

Physicochemical strengthening of nanoparticles for cancer hadron therapy and medical physics applications

Catalano Enrico, PhD

Scientia Fellows project – Postdoctoral fellowship programme in Health Sciences

- Particle therapy facilities in operation
- Particle therapy facilities under construction/planning stage

Nanotechnology and its size range

Scuola Universitaria Professionale della Svizzera Italiana

UNIVERSITÀ DEGLI STUDI DI TORINO

ALMA UNIVERSITAS TAURINENSIS

Development of engineered magnetic nanoparticles for cancer therapy

Project supported by AIRC and Compagnia San Paolo

Integrative therapeutic anticancer approach

HADRON THERAPY FOR CANCER TREATMENT

BIOMEDICINE

First trial of CRISPR in people

Chinese team approved to test gene-edited cells in people with lung cancer.

BY DAVID CYRANOSKI

hinese scientists are on the verge of being first in the world to inject people with cells modified using the CRISPR-Cas9 gene-editing technique.

A team led by Lu You, an oncologist at Sichuan University's West China Hospital in Chengdu, received ethical approval to test the cells in people with lung cancer on 6 July, and plans to start the trial next month.

That timeline puts the proposal ahead of a planned US trial to test CRISPR–Cas9modified cells, also for the treatment of cancer.

"It's an exciting step forward," says Carl June, a clinical researcher in immunotherapy at the University of Pennsylvania in Philadelphia. Last month, the US trial was approved by an advisory panel of the US National Institutes of Health (NIH) but had yet to receive a green light from the US Food and Drug Administration (IPDA) and a university review board. There have also been a number of human clinical trial using an alternative geneediting technique, including one led by June, that have helped patients to combat HIV — but none so far has used CRISPR. The Chinese trial will enrol patients who

have metastatic non-small cell lung cancer and for whom chemotherapy, radiation therapy and other treatments have failed. "This technique is of great promise in bringing benefits to patients," says Lu.

CHROMOSOME SNIP

Lu's team will extract immune cells called T cells from the participant's blood, and use CRISPR-Cas9 technology — which pairs a molecular guide able to identify specific genetic sequences on a chromosome with an enzyme that can snip the chromosome at that spot — to knock out a specific gene in the

476 | NATURE | VOL 535 | 28 JULY 2016 © 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved

Nanomedicine and Cancer therapy

- Nanotechnology is at the forefront of both targeted drug delivery and intrinsic therapies.
- Nanoparticles can already be injected into the tumor and then be **activated to produce heat** and destroy cancer cells locally either by magnetic fields, X-Rays or light.
- The encapsulation of existing chemotherapy drugs or genes allows much more localized delivery both reducing significantly the quantity of drugs absorbed by the patient for equal impact and the side effects on healthy tissues in the body.

Multifunctional theranostic nanoparticles

Sheng Tong et al. Ann Biomed Eng. 2014; 42(2): 243-259.

Targeted nano-drug delivery in tumor microenvironment

Drug targeting strategies and nanomedicine therapeutics in cancer care

Wicki A et al., J Control Release. 2015; 200:138-57

Nanotherapeutic platforms

Wicki A et al., J Control Release. 2015; 200:138-57

Targeted drug delivery in cancer therapy

Targeted therapy

Applications of MNPs in biomedicine

Biomedical applications of iron-oxide nanoparticles

Hyperthermia to Treat Cancer by using magnetic nanoparticles

Magnetic nanoparticle heating in an AC magnetic field for magnetic hyperthermia

• When magnetic nanoparticles are subjected to an AC magnetic field they show heating effects due to losses during their magnetization reversal process. This remarkable heating effect shown by magnetic nanoparticles has opened up numerous applications within the natural sciences sector.

In the magnetic nanoparticles the heat generation is mainly through the following phenomenon

- Hysteresis loss
- <u>Néel relaxation loss</u>
- Brown relaxation loss
- Losses due to friction in viscous suspensions

Heat generation through Néel relaxation is due to rapid changes in the direction of magnetic moments, hindered by anisotropy energy that tends to turn the magnetic domain of the magnetic nanoparticle in a given direction according to their crystal lattice structure.

S. Laurent et al. / Advances in Colloid and Interface Science 166 (2011) 8-23

Advantages for the use of superparamagnetic ironoxide nanoparticles (SPIONs) in cancer therapy

Iron-oxide nanoparticles offer distinct advantages over other drug delivery platforms used with anticancer medications:

- a) The pharmacokinetics of SPIONs are easily determined using noninvasive imaging techniques such as nuclear magnetic resonance (NMR);
- b) SPIONs can easily be guided to cancer tissues using the electromagnetic field (EM);
- c) SPIONs can selectively generate energy to destroy cancer cells;
- d) and when functionalized with antibodies against cancer biomarkers, SPIONs can selectively deliver a "cocktail" of therapeutic pharmaceuticals.

Biomedical applications of magnetic nanoparticles

- The possibility to convert dissipated magnetic energy into thermal energy in magnetic nanoparticles could led to an increase in research within the biomedical sciences sector and this technique has the following significant advantages
- 1) Cancer treatment by artificially inducing hyperthermia to kill cancer cells without affecting the nearby healthy tissue.
- 2) MNP's (Magnetic Nanoparticles) absorbed by cells through endocytosis, help to deliver therapeutic heat directly to the cells when subjected to AC magnetic field.
- 3) Cell specific binding made possible through surface functionalization of magnetic nanoparticles with biomolecules i.e. target specificity.
- 4) Controlled delivery of drugs using magnetic nanoparticles surface functionalized with thermo labile drugs or using thermo sensitive catheters/ stents set to release via magnetic nanoparticles when subjected to an AC magnetic field.

Physics of magnetism

Article about applications of Iron oxide nanoparticles on tumor tissues on Nature Nanotechnology

Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues

Saeid Zanganeh^{1,2}, Gregor Hutter^{2,3}, Ryan Spitler¹, Olga Lenkov^{1,2}, Morteza Mahmoudi⁴, Aubie Shaw⁵, Jukka Sakari Pajarinen⁶, Hossein Nejadnik^{1,2}, Stuart Goodman⁶, Michael Moseley¹, Lisa Marie Coussens⁵ and Heike Elisabeth Daldrup-Link^{1,2,7}*

Until now, the Food and Drug Administration (FDA)-approved iron supplement ferumoxytol and other iron oxide nanoparticles have been used for treating iron deficiency, as contrast agents for magnetic resonance imaging and as drug carriers. Here, we show an intrinsic therapeutic effect of ferumoxytol on the growth of early mammary cancers, and lung cancer metastases in liver and lungs. *In vitro*, adenocarcinoma cells co-incubated with ferumoxytol and macrophages showed increased caspase-3 activity. Macrophages exposed to ferumoxytol displayed increased mRNA associated with pro-inflammatory Th1-type responses. *In vivo*, ferumoxytol significantly inhibited growth of subcutaneous adenocarcinomas in mice. In addition, intravenous ferumoxytol treatment before intravenous tumour cell challenge prevented development of liver metastasis. Fluorescence-activated cell sorting (FACS) and histopathology studies showed that the observed tumour growth inhibition was accompanied by increased presence of pro-inflammatory M1 macrophages in the tumour tissues. Our results suggest that ferumoxytol could be applied 'off label' to protect the liver from metastatic seeds and

Multiple therapeutic approach of the project

Targeted chemotherapy

Cancer gene therapy

Hyperthermia in the cancer site

Objectives of the experimental work

 Physicochemical and biological characterization and validation of iron-oxide nanoparticles (MNPs or SPIONs) to be used in cancer therapy and biomedicine

Different applications of magnetic nanoparticles

* Li Z., Kawashita M., Araki N., Mitsumori M., Hiraoka M., Doi M., 2010, Magnetite nanoparticles with high heating efficiencies for application in the hyperthermia of cancer. *Materials Science and Engineering C*, **30**, 990–996.

^{*1} Singh R. K., Kim T. H., Patel K. D., 2012, *J Biomed Mater Res Part A*, published online in Wiley Online Library (wileyonlinelibrary.com) *2 Stöber W., Fink A., 1968, Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. *Journal of colloidal and interface science*, **26**, 62-69

Fe₃O₄

Silica-Calcium shell coating (Mag-SiO₂-Ca(3) NPs) was obtained using two different precursors: calcium citrate and calcium hydroxide

^{*1} Singh R. K., Kim T. H., Patel K. D., 2012, *J Biomed Mater Res Part A*, published online in Wiley Online Library (wileyonlinelibrary.com) ^{*2} Stöber W., Fink A., 1968, Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. *Journal of colloidal and interface science*, **26**, 62-69

General characteristics of iron-oxide nanoparticles

Type of nanoparticle	Medium	pH approx	Concentration
Magnetite (Fe ₃ O ₄)	Water	9.6	1,8 mg/ml
Magnetite – silica (Fe ₃ O ₄ - SiO ₂)	Water	7.9	3,4 mg/ml
Magnetite – silica – calcium (99:1) – Fe ₃ O ₄ -SiO ₂ -Ca(3) CITR	Water	9.2	4,4 mg/ml
Magnetite – silica – calcium (99:1) – Fe ₃ O ₄ -SiO ₂ -Ca(3) IDR	Water	8.3	4,5 mg/ml

Physicochemical characterization of MNPs

• The magnetic nanoparticles were characterized for:

Morphology and size (FESEM, TEM)

Surface chemical properties (EDS probe)

Superparamagnetic behavior of MNPs (Magnetic hysteresis)

Heating ability of MNPs in a magnetic field

Colloidal stability (Zeta potential)

TEM images of MNPs

TEM Images and SAED patterns of Fe₃O₄ and Fe₃O₄-SiO₂ samples. a) TEM image of Fe₃O₄, b) SAED pattern of Fe₃O₄, c) TEM image of Fe₃O₄-SiO₂, d) SAED pattern of Fe₃O₄-SiO₂.

FESEM images of MNPs

FESEM (a), **TEM** (b) and **STEM** (c - dark field mode, d - bright field mode) images of Fe_3O_4 -SiO₂ NPs.

STEM images of iron-oxide nanoparticles

EDS analyses of iron-oxide nanoparticles

TEM images of iron-oxide nanoparticles

TEM images: Fe_3O_4 (A), Fe_3O_4 -SiO₂ (B), Fe_3O_4 -SiO₂-Ca3 (C), Fe_3O_4 -SiO₂-Ca17 (D) nanoparticles.

Characterization of Fe₃O₄ NPs: TEM - FESEM - EDS

Fe₃O₄-SiO₂ NPs: TEM – FESEM - EDS

- Diffraction signals of magnetite
- Halo for the amorphous phase

Fe₃O₄-SiO₂-Ca(3) NPs: TEM - FESEM - EDS

Iron oxide nanoparticles - AFM/MFM

Silica-calcium core-shell iron-oxide nanoparticles - AFM/MFM

Magnetization curves of MNPs

Vibrating Sample Magnetometer (VSM-Lakeshore) was used to determine the magnetic characteristics of the samples.

Magnetization curves of MNPs

Vibrating Sample Magnetometer (VSM-Lakeshore) was used to determine the magnetic characteristics of the samples.

Definition of Zeta potential (ZP)

The significance of **Zeta potential** can be related to the stability of colloidal dispersions.

Relationship between the value of Zeta potential and colloidal stability

Zeta Potential [mV]	Stability behaviour of the colloid
da 0 a ±5	Rapid coagulation or flocculation
da ±10 a ±30	Incipient instability
da ±30 a ±40	Moderate stability
da ±40 a ±60	Good stability
>±61	Excellent stability

Robert JH. Zeta Potential in Colloid Science: Principles and Applications. Colloid Sciences Series, Sydney. Academic Press 1989; 1-38.

Zeta potential of magnetic nanoparticles

Zeta potential of magnetic nanoparticles

Zeta Potential

Values of Zeta potential of third synthesis of magnetic nanoparticles

Type of nanoparticle	starting pH	ZP (mV)	Stability behaviour of the colloid
Fe ₃ O ₄ NPs	4.26	- 30.23 ± 1.49 mV	Moderate stability
Fe ₃ O ₄ -SiO ₂ NPs	4.70	- 30.41 ± 0.81 mV	Moderate stability
Fe ₃ O ₄ -SiO ₂ -Ca(3) CITR NPs	5.63	- 43.14 ± 1.95 mV	Good stability
Fe ₃ O ₄ -SiO ₂ -Ca(3) IDR NPs	5.54	- 42.67 ± 1.61 mV	Good stability

Heating ability of magnetic nanoparticles in a magnetic field

Viability test: MTT assay

Brigitta Szalay et al, Journal of Applied Toxicology

Not direct contact cytotoxicity evaluation of MNPs

Not direct contact cytotoxicity of MNPs (Soaking for 24 h)

Not direct contact cytotoxicity of MNPs (Soaking for 72 h)

*P < 0.05 compared with control

Cytocompatibility of MNPs in static conditions (72 hours)

72 hours

*P < 0.05 One way analysis of variance (ANOVA) followed by Scheffe's test

Cytocompatibility of MNPs in dynamic conditions

Cytocompatibility of MNPs was investigated also in dynamic conditions

Experimental setting

- Continuous flow bioreactor with a peristaltic pump simulating cytocompatibility in dynamic conditions
- Humidified incubator at 37°C, 5% CO₂ atmosphere

MS1 cells (30.000 cells/cm²) were seeded at confluence on a strip of electrospun polycaprolactone (PCL)

MS1 cells were subjected to a continuous flow of cell culture medium (DMEM) with MNPs at the concentration of 20 μ g/ml.

Ucciferri N. Nanotoxicology. 2014 Sep; 8(6):697-708.

When MS1 cells were confluent \rightarrow strips were inserted in the bioreactor.

- Experimental times: 2 h, 12 h and 24 h.
- Cell viability tests used: XTT and LDH assay.

Cytocompatibility in dynamic conditions

Cell vlability was evaluated using LDT assay and XTT assay			
LDH release (% of total)			
Stimulation	Fe_3O_4 NPs	Fe_3O_4 -SiO ₂ NPs	Control
2 h	2.77 ± 0.39%	2.59 ± 0.28%	2.24 ± 0.41%
12 h	3.19 ± 0.46%	3.04 ± 0.35%	2.48 ± 0.30%
24 h	3.56 ± 0.51%	3.98 ± 0.46%	2.74 ± 0.37%
24 h	3.56 ± 0.51%	3.98 ± 0.46%	2.74 ± 0.37%

Cell viability was evaluated using LDH assay and XTT assay

XTT assay			
Stimulation	Fe ₃ O ₄ NPs	Fe_3O_4 -Si O_2 NPs	Control
2 h	93.8 ± 4.2%	96.9 ± 3.7%	100%
12 h	89.5 ± 2.8%*	93.1 ± 3.3%	100%
24 h	86.8 ± 3.1%*	90.9 ± 2.7%	100%

The viability ranged between 86% and 97% in XTT assay and the results for both assays were comparable.

*P < 0.05 compared to control

Cytocompatibility in dynamic conditions (Fe_3O_4 and Fe_3O_4 -SiO₂ NPs)

Cells were analyzed with FESEM equipped to EDS probe, in order to evaluate the presence, if any, of Fe_3O_4 and Fe_3O_4 -SiO₂ nanoparticles deposits.

Fe₃O₄

Fe₃O₄-SiO₂

Control

Using dynamic culture conditions, the cells morphology appeared typically elongated.

_ N

Cytocompatibility in dynamic conditions

FESEM and EDS analyses showed MNPs adsorbed onto the MS1 cell membrane. MNPs deposition was not observed when Fe_3O_4 -SiO₂ nanoparticles were used

ROS generation induced by MNPs

ROS generation induced by MNPs after 24 hours (First synthesis)

CellROX Green Reagent measures reactive oxygen species (ROS) in live cells

Protocol

- MS1 cells were treated for 24 h with the following concentrations of MNPs: 10, 20, 40 and 80 µg/ml.
- 2. Add the CellROX Green Reagent at concentration of 5 μ M.
- Incubate the cells for 30 minutes at 37°C.
- 4. Remove medium and wash the cells with PBS.
- 5. Analyze the cells to FACS.

ROS production after 24 hours induced by MNPs

50 45 40,41 Mag NPs Mag-SiO₂-Ca(3) CITR NPs Mag-SiO₂ NPs Mag-SiO₂-Ca(3) IDR NPs 40 35 Cell ROS production % 30 25 20,41 20,04 20 13,17 15 11,88 9,52 10 3,75 2,6 5 1,01 0,98 0 Control Menadione 2 µg/ml 20 µg/ml 2 µg/ml 20 µg/ml 2 µg/ml 20 µg/ml 20 µg/ml 20 µg/ml

(25 µM)

ROS production induced by MNPs after 24 h

*P < 0.05 compared with control untreated and positive control (Menadione 25 μ M).

Apoptosis evaluation: Annexin V/PI

- Apoptosis evaluation of MNPs effect on MS1 cells using the following concentrations: 2 and 20 µg/ml
- Annexin V-FITC PI (Propidium iodide) staining
- Experimental time-points: 24, 48 and 72 hours

MS1 cells were seeded

at a density of:

- 2,5 × 10⁵ cells (24 hours)
- 1,75 × 10⁵ cells (48 and 72 hours)
- FACS Analysis

Apoptosis evaluation after 72 hours

In vivo evaluation of iron-oxide nanoparticles

Biodistribution of MNPs - 7 days (Short term evaluation)

- Fe₃O₄ and Fe₃O₄-SiO₂ nanoparticles were tested using the following concentration: 2 mg Fe/kg body weight
- Evaluation of hematological parameters after 3 and 7 days (May-Grunwald-Giemsa staining for counting of blood cells)
 - Evaluation of biochemical parameters of renal and hepatic functionality after 7 days: ALT, AST, CRE, LDH

Aspartate transaminase (AST), alanine transaminase (ALT), creatinine (CRE), lactic acid dehydrogenase (LDH)

Serum biomarkers analysis (2 mg Fe/kg - 7 days)

	Control	Fe ₃ O ₄ NPs	Fe ₃ O ₄ -SiO ₂ NPs
ALT (U/l)	39.42 <u>+</u> 2.69	43.15 <u>+</u> 2.72	44.26 <u>+</u> 2.06*
AST (U/l)	127.35 <u>+</u> 12.07	129.34 <u>+</u> 7.12	134.81 <u>+</u> 6.83*
CRE (µmol/l)	19.21 <u>+</u> 1.25	21.91 <u>+</u> 1.03	23.48 <u>+</u> 1.47*
LDH (U/l)	833.75 <u>+</u> 53.28	841.67 <u>+</u> 57.91	843.46 <u>+</u> 46.35

ALT alanine transaminase, AST aspartate transaminase, CRE creatinine, LDH lactic acid dehydrogenase

Data are presented as mean \pm SD (n = 4).

Hematological parameters (2 mg Fe/kg)

	Control	Fe ₃ O ₄ NPs	Fe ₃ O ₄ -SiO ₂ NPs
Red blood cell (10 ⁶ /µl) after 3 days	9.83 <u>+</u> 0.52	9.76 <u>+</u> 0.93	9.71 <u>+</u> 1.19
Red blood cell (10 ⁶ /µl) after 7 days	9.75 <u>+</u> 0.83	9.69 <u>+</u> 1.07	9.64 <u>+</u> 0.71
White blood cell (10 ³ /µl) after 3 days	6.51 <u>+</u> 0.73	6.63 <u>+</u> 1.18	6.72 <u>+</u> 1.26
White blood cell (10 ³ /µl) after 7 days	6.57 <u>+</u> 1.14	6.73 <u>+</u> 1.22	6.88 <u>+</u> 1.61

Prussian Blue staining (2 mg Fe/kg - Liver, Spleen)

Prussian Blue staining (2 mg Fe/kg - Kidney, Brain)

Prussian Blue staining (2 mg Fe/kg - Lung, Heart)

ICP-AES analysis results (2 mg Fe/kg)

*P < 0.05 compared to control - One way analysis of variance (ANOVA) followed by Scheffe's test

Cell/MNPs interaction via Lentivirus coupling

- Retrovirus (RNA)
- Peri-capside
- Used in cell trasduction as a vector
- Different types of MNPs were assembled with lentiviral vectors with different MOI (multiplicity of infection) ratios

С

D

\$

07

Figure 1. GFP expression after in vivo delivery of LV-MNPs complexes. C57BI/6 mice were tail vein injected with 2µg/g mouse of MNPs after assembly with 5x10⁷ TU of LV.PGK-GFP. (A) GFP expression was checked at 1 week in liver and (B) spleen for all the different nanoparticles. (C) Comparison of MNPs or MNPs-SiO2 complexes in vivo, liver (400x) and spleen (100x).

After LV-MNPs injection, GFP was mainly expressed by macrophages (F4/80+ cells; in red) in liver, while, interestingly, pattern of GFP+ cells in spleen varies according to MNPs coating. Nuclei are stained in blue.

In vivo biocompatibility evaluation of nanoparticles

- The MNPs used in this study demonstrated to be biocompatible both in vitro and in vivo conditions.
- MS1 cells in contact with MNPs showed a small percentage of apoptotic and necrotic cells comparable to untreated control.
- The in vivo data confirmed a good performance of the nanoparticles using a concentration of 2 mg Fe/kg body weight for biomedical applications.

MNPs interaction via Lentivirus coupling

• Lentiviral vectors coupled with SPIONs increased gene expression in liver and spleeen. Thus it can be used for applications of cancer gene therapy.

Breast cancer

 Breast cancer is the most common invasive cancer in women worldwide. It affects about 12% of women worldwide. Breast cancer comprises 22.9%¹ of invasive cancers in women and 16% of all female cancers. In 2012, it comprised 25.2% of cancers diagnosed in women, making it the most common female cancer.

Various approaches explored to target breast cancer cells using nanomedicines

Electrostatic conjugation of doxorubicin with CA-SPIONs

Goal of the project

 This project aims to implement an extremely innovative multi-therapeutic strategy that combines targeted drug delivery of chemotherapeutics, the use of MNPs properties of hyperthermia to target in vitro breast cancer drug-resistant and not drugresistant cell lines.
1st objective of Scientia fellows project

The first objective of the project will be planned as follows: MNPs conjugation with chemotherapy drugs

- Chemotherapy drugs could be conjugated to carboxylic acid functionalized iron-oxide nanoparticles or to other types of nanoparticles.
- Different antineoplastic agents (doxorubicin, epirubicin, cyclophosphamide and methotrexate) or monoclonal antibody Trastuzumab (Herceptin) could be used for in vitro testing efficacy of combined effect on breast cancer cell lines.

1st objective of Scientia fellows project

- Analysis of the biological activity of the MNPs loaded with chemotherapy drugs on human mammary epithelial cells and breast cancer cells to evaluate their antitumor activity without or under hyperthermic conditions
- The in vitro efficacy of conjugated MNPs will be tested on the following cell lines: MCF-7 (ATCC, human breast cancer cells) and MDA-MB-231 cells (ATCC, human breast cancer cells derived from metastatic site), MCF-10A (ATCC, mammary epithelial cells), as negative control.

The following *in vitro* tests could be performed:

- Evaluation of the cytotoxicity of the MNPs: **MTT test** and **Apoptosis evaluation**.
- <u>Cell growth:</u> cell counting in Burker chamber.
- <u>Cell morphology</u> will be evaluated by inverted phase contrast microscopy.
- <u>Induction of ROS production</u> will be evaluated by fluorimetric assay.
- <u>Further in vitro tests</u>

Hyperthermia selectivity treatment on breast cancer cells

Hyperthermia selectivity treatment on breast cancer cells	Single cell colture	Double cell colture	Three cell coltures
For hyperthermia treatment, cells will be put in the incubator at 46°C for 30 minutes,	MCF-10A	MCF-7 + MCF10A	MDA-MB-231 + MCF-7 + MCF10A
corresponding to a temperature dosage of 90 cumulative	MDA-MB-231	MDA-MB-231 + MCF10A	
equivalent minutes at 43°C	MCF-7		

Magnetic hyperthermia induced by iron-oxide nanoparticles loaded with doxorubicin

- MCF-7 cells and MDA-MB-231 cells (5000 cells) in 96 well-plates
- Cells to passage 15-18
- For hyperthermia treatment, cells were put in the incubator at 46°C for 30 minutes with Dox-CA-SPIONs conjugates. Cells not in contact with MNPs was considered like control.
- 50 μ L aqueous dispersion of CA-SPIONs (50 μ g/mL) were added to a 1 mL of Dox solution (50 μ M), and mixed with shaking at room temperature for 2 minutes.
- After formation of the drug-nanoparticle conjugates, they are separated from the free drugs via magnetic separation and washing in the aqueous medium.
- Experimental time: 24, 48 and 72 hours
- MTT assay
- Cell viability was calculated as follow: (experimental o.d. / mean control o.d.)*100 optical density (o.d.)

Magnetic hyperthermia on breast cancer cells 46°C - 30 minutes

- Triple negative breast cancer cells MDA-MB-231. It corresponds to human breast cancer cells derived from metastatic site
- MCF-7 (Human breast cancer cells ER+/PR+)
- Magnetic hyperthermia at 46°C for 30 minutes in contact with MNPs

Table 1. Direct contact treatment

% Trypan Blue positive estrogen receptor-positive MCF-7 cells (mean<u>+</u>standard deviation)

	24 h
	% Trypan Blue positive MCF-7 cells
Control	5.1 <u>+</u> 0.5
CA-Fe ₃ O ₄ 46°C 30 min	78.2 <u>+</u> 0.9
Doxorubicin	49.5 <u>+</u> 1.0
CA-Fe ₃ O ₄ -DOX	30.2 <u>+</u> 0.8
CA-Fe ₃ O ₄ -DOX 46°C 30 min	13.9 <u>+</u> 0.7
	48 h
	% Trypan Blue positive MCF-7 cells
Control	6.4 <u>+</u> 0.4
CA-Fe ₃ O ₄ 46°C 30 min	71.5 <u>+</u> 0.8
Doxorubicin	43.7 <u>+</u> 1.2
CA-Fe ₃ O ₄ -DOX	24.8 ± 0.9
CA-Fe ₃ O ₄ -DOX 46°C 30 min	11.6 <u>+</u> 1.0

72 h

	% Trypan Blue positive MCF-7 cells
Control	7.2 <u>+</u> 0.6
CA-Fe ₃ O ₄ 46°C 30 min	64.5 <u>+</u> 0.8
Doxorubicin	36.7 <u>+</u> 1.2
CA-Fe ₃ O ₄ -DOX	17.2 <u>+</u> 0.7
CA-Fe ₃ O ₄ -DOX 46°C 30 min	9.3 <u>+</u> 0.5

MDA-MB-231 cells

Dual tumor targeting therapy on MDA-MB-231 cells after 24 hours

Dual tumor targeting therapy on MDA-MB-231 cells after 48 hours

Table 2. Direct contact treatment

% Trypan Blue positive triple-negative MDA-MB-231 cells

(mean<u>+</u>standard deviation)

24 h
% Trypan Blue positive MDA-MB-231 cells
6.6 <u>+</u> 0.7
90.2 <u>+</u> 0.8
66.3 <u>+</u> 1.1
41.5 <u>+</u> 0.9
29.4 ± 0.7
48 h
% Trypan Blue positive MDA-MB-231 cells
5.9 <u>+</u> 0.6
86.5 <u>+</u> 1.3
52.3 <u>+</u> 1.4
33.5 ± 0.8
21.7 <u>+</u> 1.1

	72 h	
	% Trypan Blue positive MDA-MB-231 cells	
Control	6.9 <u>+</u> 0.8	
CA-Fe ₃ O ₄ 46°C 30 min	77.2 <u>+</u> 1.1	
Doxorubicin	46.5 <u>+</u> 1.3	
CA-Fe ₃ O ₄ -DOX	23.2 ± 0.8	
CA-Fe ₃ O ₄ -DOX 46°C 30 min	12.2 ± 0.7	

Cytocompatibility evaluation of iron-oxide nanoparticles on MCF-10A cells

- MCF-10A cells mammary epithelial cells (5000 cells) in 96 wellplates
- Cells to passage 1-2
- 30 nm diameter Carboxylic acid functionalized iron-oxide nanoparticles CA-SPIONs: 25 and 50 μg/mL
- For hyperthermia treatment, cells were put in the incubator at 46°C for 30 minutes. Cells not in contact with MNPs was considered like control.
- Experimental time: 24, 48 and 72 hours
- MTT assay
- Cell viability was calculated as follow: (experimental o.d. / mean control o.d.)*100 optical density (o.d.)

Cytocompatibility evaluation on MCF-10A cells after 24 hours

Control Magnetic hyperthermia CA-SPIONs 25 µg/ml CA-SPIONs 50 µg/ml 46°C - 30 min

Cytocompatibility evaluation on MCF-10A cells after 48 hours

Cytocompatibility evaluation on MCF-10A cells after 72 hours

Results

- These first preliminary data seem to indicate that the magnetic hyperthermia at 46°C for 30 minutes induced by CA-SPIONs led to increasing cytotoxic effects of the nanoparticles on breast cancer cells after 24, 48 and 72 hours from treatment.
- Magnetic hyperthermia at 46°C for 30 min kill ER+/PR+ and conjugation of doxorubicin to SPIONs is able to kill MCF-7 cells and also more resistant MDA-MB-231 cells after 24, 48 and 72 hours.
- The difference in cell mortality of MCF-7 cells compared to MDA-MB-231 cells could be explained probably due to the increased susceptibility of MCF-7 cells.
- Carboxylic acid functionalized iron-oxide nanoparticles CA-SPIONs were demonstrated to be cytocompatible on mammary epithelial cells (MCF-10A cells)

Thank you for your attention!

Prof. Vessela N. Kristensen, Xavier Tekpli, Shakila Jabeen, Andliena Tahiri, Jovana Klajic, Surendra Kumar, Torben Lüders

Prof. Jürgen Geisler

