Strategy of detection for solar CNO neutrinos and temperature stabilization of the borexino detector

Riccardo Biondi¹ on behalf of Borexino Collaboration

¹Laboratori Nazionali del Gran Sasso

 $106^{\rm o}$ National Congress of SIF

A window into the core of the Sun

Solar Neutrinos

Borexino Detector

Strategy for CNO neutrinos Detection

Conclusions

As we already know, the Sun is powered by Nuclear Fusion:

This reactions produce a total neutrino flux of $\sim ~10^{11}\,{\rm cm}^{-2}\,{\rm s}^{-1}.$

Precise measurement of the different components of the Solar Neutrino Flux can be used to address many intersting topics in astroparticle pysics.

Borexino Detector

Borexino Story

Solar Neutrinos

Borexino Detector

Strategy for CNO neutrinos Detection

Conclusions

Borexino will be decommissioned soon, but...

"We end with a Bang!"

Motivations

Solar Neutrinos

Borexino Detector

Strategy for CNO neutrinos Detection

Conclusions

Why CNO neutrino detection is so important?

- Proof energy production in stars via CNO cycle.
- It is expected to be dominant in stars heavier than the sun.
- Sensitive to Sun metallicity (HZ vs LZ models)

With the CNO detection, Borexino will completely unveil the two processes powering the Sun.

Detection Challenge

Solar Neutrinos

Borexino Detector

Strategy for CNO neutrinos Detection

Conclusions

- Low rate of CNO neutrinos: $\sim 3 5cpd/100ton$.
- Shape similar to $^{210}\mathrm{Bi}$ and $\nu(\mathrm{pep}).$

This implies a strong correlation between the three species that needs independent constraints of the two backgrounds to disentangle them from the CNO signal.

■ ν (pep) flux: can be constrained at the 1.4 % level through the solar luminosity constraint coupled with robust assumptions on the pp to pep neutrino rate ratio, existing solar neutrino data, and the most recent oscillation parameters.

Constraint on ²¹⁰Bi rate:

5 days 138.4 days

Fiducial Volume

Inner Vessel with 210Po contamination

210Po

22.2 years

Solar Neutrinos

Borexino Detector

Strategy for CNO neutrinos Detection

Conclusions

 $^{210}\mathrm{Bi}$ rate can be constrained from its daughter nucleus $^{210}\mathrm{Po}$ decay rate.

■ At secular equilibrium the rate of ²¹⁰Bi is equal to that of ²¹⁰Po

■ ²¹⁰Po events can be easily detected: they produce monoenergetic α (clear gaussian peak in the spectra) and can be discriminated from β events, using pulse shape.

■ Stability challenges: ²¹⁰Po intrinsic rate is perturbed by the presence of strong convective motions, that contaminate the fiducial volume with additional ²¹⁰Po. To avoid this, the collaboration have made a huge effort to stabilize experimental hall temperature and insulate the detector.

Thermal insulation and Temperature Monitoring

Solar Neutrinos

Borexino Detector

Strategy for CNO neutrinos Detection

Conclusions

- Double layer of mineral wool (thermal conductivity:0.03 W/m/K)
- Temperature probes (Resolution: 0.07 K)
- Active Control Temperature System of Hall C

²¹⁰Po Mapping

Solar Neutrinos

Borexino Detector

Strategy for CNO neutrinos Detection

Conclusions

\blacksquare With the achieved Stability, we can procede to evaluate the $^{210}\mathrm{Po}$ intrinsic rate.

$^{210}\mathrm{Bi}\ \mathrm{from}\ ^{210}\mathrm{Po}$

Solar Neutrinos

Borexino Detector

Strategy for CNO neutrinos Detection

Conclusions

The quest for CNO is turned into the quest of $^{210}\mathrm{Bi}$ through $^{210}\mathrm{Po}$

We need to find the region in the Fiducial Volume where the rate of $^{210}\mathrm{Po}$ is at it's minimum.

From that we can infer the intrinsic $^{210}{\rm Po}$ rate and hence the $^{210}{\rm Bi}$ rate.

■ The key assumption is that, in this region, the ²¹⁰Po contamination in the fiducial volume is negligible (confirmed by fluid dynamics simulations).

Taking also into account systematic uncertainties on the $^{210}\mathrm{Bi}$ uniformity in the Fiducial Volume, we have the following constraint:

$R(^{210}Bi) \leqslant (11.5\pm1.3) cpd/100t$

Conclusions

Solar Neutrinos

Borexino Detector

Strategy for CNO neutrinos Detection

Conclusions

Now we can plug the $^{210}{\rm Bi}$ contstraint into the Multivariate Fit to find the CNO neutrino rate in our detector.

All the details about this will be shown in the presentation of Luca Pelicci *"First direct detection of CNO neutrinos: the multivariate fitting strategy"* (atticon12484)

R. Biondi at

atticon12561