Ricostruzione degli eventi di Limadou-HEPD con tecniche di Deep Learning

14-18 September 2020 - Congresso SIF

Francesco Maria Follega and Roberto Battiston

on behalf of the Limadou Collaboration

Event Reconstruction based on Deep Learning

Deep learning algorithms play a key role in the event reconstruction of most modern particle physics experiments (particle) identification, tracking, correction of the observables, etc...). They offer advantages and show very few drawbacks:

Advantages:

- They account for all correlations between the variables, which are hidden or not easy to model;
- They can compensate for and exploit the detector asymmetries and data inhomogeneities to improve reconstruction performances;

Limits:

They rely on simulations (training dataset): MC \rightarrow DATA not trivial.

Francesco Maria Follega (francesco.follega@unitn.it)

Reference case - Limadou HEPD

The Limadou High Energy Particle Detector (HEPD) is an Italian payload on board of the China Seismo Electromagnetic Satellite (CSES) [1].

- Measure fluxes of charged particles;
- Electrons (3-100 MeV) and protons (30-300 MeV);

HEPD Detector:

- a trigger plane made of plastic scintillator, segmented into 6 paddles;
- A tracker made by 2 planes of silicon microstrip detectors;
- a calorimeter made by 16 planes of plastic scintillator and 3 x 3 matrix of an inorganic scintillator (LYSO);
- a veto system which consists of 5 plastic scintillators.

[1] "The HEPD particle detector of the CSES satellite mission", Science China Technological Sciences [2] "Scientific Goals and In-orbit Performance of the High-energy Particle Detector on Board the CSES ", APJS 2019

Francesco Maria Follega (<u>francesco.follega@unitn.it</u>)

Scintillator Counters Silicon Planes A 12 10 10

Simulation: detector and data

We used Geant4 to simulate particles (electrons and protons) interacting with a detector like limadou HEPD: trigger bars (2 PMTs), 16 scintillator planes (PMT evenly distributed at the edges of each plane) and an array of 9 Lyso cubes (1 PMT).

Francesco Maria Follega (<u>francesco.follega@unitn.it</u>)

▶ 30 MeV< E_K < 1000 MeV (protons)</p> $1 \text{ MeV} \le E_{K} \le 200 \text{ MeV}$ (electrons)

Traversing P1 and P2, but not hitting the

Deep Learning reconstruction strategy

The main elements of the reconstruction chain are two Fully Connected Neural Networks (FCNNs) taking as input the signal of photo-multiplier tubes and giving as output particle-type flag, polar and azimuthal angles in the local frame and energy of the particle.

Francesco Maria Follega (<u>francesco.follega@unitn.it</u>)

Input and Target distributions

Input variables: PMT signals

Francesco Maria Follega (<u>francesco.follega@unitn.it</u>)

SIF - 14/09/2020

6

Training procedure

The two FCNNs are trained independently to keep their prediction (PID and Kin) uncorrelated as much as possible. Therefore, we get **independent predictions at each step** of the reconstruction chain.

- Training dataset split in two parts: **80% for** training and 20% for evaluation (cross validation [3] was used).
- An additional and statistically independent test sample was used to check the FCNNs performance.
- Number of epochs ranged between 200-450 and hyperparameters (batch size, learning) rate, etc...) optimized;
- Loss functions: combination of losses (i.e. L1, L2) for FCNN_{Kin} (regression) and BCE for FCNN_{PID} (classification);

[3] "A Study of CrossValidation and Bootstrap for Accuracy Estimation and Model Selection ", http://ai.stanford.edu/~ronnyk/accEst.pdf

Francesco Maria Follega (francesco.follega@unitn.it)

SIF - 14/09/2020

7

Particle Identification

After the training procedure **the accuracy of the PID** based on DL **is ~ 96 %** (accuracy with standard methods 5-10% lower). **Efficiency** and **mistag rate** have been estimated for electrons and protons.

The cut on the FCNNPID output is optimized to improve the separation between electrons and protons overall all the energies.

Francesco Maria Follega (<u>francesco.follega@unitn.it</u>)

Kinetic Energy reconstruction

Deep Learning algorithms can extend the energy reconstruction also for not contained particle exploiting the charge deposit profiles. When the particle starts to be MIP-like this information is not more available and the reconstruction less accurate.

designed.

Francesco Maria Follega (<u>francesco.follega@unitn.it</u>)

Electrons are much more problematic than the protons as they are MIPs for the energies for which this experiment has been

Arrival direction

It is most challenging task using just the calorimeter information. The more the energy of a particle the more it traverses the detector, providing useful information for the angular reconstruction. For that reason the error on the arrival direction decreases when the kinetic energy increases. **Electrons** Protons

The FCNN reconstruction outperforms the random pointing (always vertical, 0°) over all the energy range.

Francesco Maria Follega (<u>francesco.follega@unitn.it</u>)

A new and pioneering **DL-based event reconstruction** has been presented. The performance of this set of algorithms on **simulated events** have been shown and the **results are promising**:

- The DL chain successfully reconstruct **PID**, energy and arrival direction of the incoming charged particle;
- This method exploits the correlation between energy and arrival direction to improve both the predictions;
- DL efficiently reconstructs the energy for not contained particle (allows not contained analysis);
- Further developments and studies ongoing;

