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Event Reconstruction based on Deep Learning

Deep learning algorithms play a key role in the event reconstruction of most modern particle physics experiments (particle 
identification, tracking, correction of the observables, etc…) . They offer advantages and show very few drawbacks:

Advantages: 

‣ They account for all correlations between the 
variables, which are hidden or not easy to model; 

‣ They can compensate for and exploit the detector 
asymmetries and data inhomogeneities to 
improve reconstruction performances; 

Limits: 

‣ They rely on simulations (training dataset):  
MC ➔ DATA not trivial.
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Reference case - Limadou HEPD

The Limadou High Energy Particle Detector (HEPD) is an Italian payload on board of the China Seismo 
Electromagnetic Satellite (CSES) [1].  

‣ Measure fluxes of charged particles; 

‣ Electrons (3-100 MeV) and protons (30-300 MeV);

HEPD Detector: 

‣ a trigger plane made of plastic scintillator, segmented into 6 paddles; 

‣ A tracker made by 2 planes of silicon microstrip detectors; 

‣ a calorimeter made by 16 planes of plastic scintillator and 3 x 3 
matrix of an inorganic scintillator (LYSO); 

‣ a veto system which consists of 5 plastic scintillators.

[1] "The HEPD particle detector of the CSES satellite mission”, Science China Technological Sciences
[2] "Scientific Goals and In-orbit Performance of the High-energy Particle Detector on Board the CSES ”, APJS 2019
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Simulation: detector and data

We used Geant4 to simulate particles (electrons and protons) interacting with a detector like limadou HEPD: trigger bars  
(2 PMTs), 16 scintillator planes (PMT evenly distributed at the edges of each plane) and an array of 9 Lyso cubes (1 PMT).

Protons and electrons simulated: 
 (5 million events each) 

‣ 0° < θ < 90°;  

‣ 0°< ɸ < 360°; 

‣ 30 MeV< EK < 1000 MeV (protons) 
1 MeV< EK < 200 MeV (electrons) 

Selection: 

‣ Traversing P1 and P2, but not hitting the 
lateral Veto (passing);
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The main elements of the reconstruction chain are two Fully Connected Neural Networks (FCNNs) taking as input the signal of 
photo-multiplier tubes and giving as output particle-type flag, polar and azimuthal angles in the local frame and energy of the 
particle.
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Input and Target distributions
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Training procedure

The two FCNNs are trained independently to keep their prediction (PID and Kin) uncorrelated as much as possible. Therefore, 
we get independent predictions at each step of the reconstruction chain.

‣ Training dataset split in two parts: 80% for 
training and 20% for evaluation (cross 
validation [3] was used). 

‣ An additional and statistically independent test 
sample was used to check the FCNNs 
performance. 

‣ Number of epochs ranged between 200-450 
and hyperparameters (batch size, learning 
rate, etc…) optimized; 

‣ Loss functions: combination of losses (i.e. L1, 
L2) for FCNNKin (regression) and BCE for 
FCNNPID (classification);

[3] “A Study of Cross ︎Validation and Bootstrap for Accuracy Estimation and Model Selection ”, http://ai.stanford.edu/~ronnyk/accEst.pdf
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Particle Identification
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After the training procedure the accuracy of the PID based on DL is ~ 96 % (accuracy with standard methods 5-10% lower). 
Efficiency and mistag rate have been estimated for electrons and protons.
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The cut on the FCNNPID output is optimized to improve the separation between electrons and protons overall all the energies.
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Kinetic Energy reconstruction

Deep Learning algorithms can extend the energy reconstruction also for not contained particle exploiting the charge 
deposit profiles. When the particle starts to be MIP-like this information is not more available and the reconstruction less 
accurate.

Electrons are much more problematic than the protons as they are MIPs for the energies for which this experiment has been 
designed.
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Arrival direction

Electrons Protons

It is most challenging task using just the calorimeter information. The more the energy of a particle the more it traverses the 
detector, providing useful information for the angular reconstruction. For that reason the error on the arrival direction decreases 
when the kinetic energy increases.

The FCNN reconstruction outperforms the random pointing (always vertical, 0°) over all the energy range.
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Summary and conclusions

A new and pioneering DL-based event reconstruction has been presented. 

The performance of this set of algorithms on simulated events have been shown and the results are promising: 

• The DL chain successfully reconstruct PID, energy and arrival direction of the incoming charged particle; 

• This method exploits the correlation between energy and arrival direction to improve both the predictions; 

• DL efficiently reconstructs the energy for not contained particle (allows not contained analysis); 

• Further developments and studies ongoing;
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